
Telecommun Syst
DOI 10.1007/s11235-015-9996-6

The IPv6 QoS system implementation in virtual infrastructure

Halina Tarasiuk · Sławomir Hanczewski · Adam Kaliszan ·
Robert Szuman · Łukasz Ogrodowczyk · Iwo Olszewski ·
Michał Giertych · Piotr Wiśniewski

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The paper provides a novel solution to imple-
ment the IPv6 QoS system as one of Parallel Internets. This
approach exploits both an IP protocol and a virtualization
technology. Therefore, the proposed IPv6 QoS system is an
evolutionary approach for Future Internet. Also, an impor-
tant advantage of the proposal is that virtual nodes of the IPv6
QoS network operate on separated control and data planes.
Such a way of the implementation allows to develop the sys-
tem with flexible routing and virtual network management.

Keywords IPv6 protocol · Next Generation Networks ·
Virtualization technology · Software router

H. Tarasiuk (B) · P. Wiśniewski
Institute of Telecommunications, Warsaw University
of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
e-mail: halina@tele.pw.edu.pl

P. Wiśniewski
e-mail: p.wisniewski@tele.pw.edu.pl

S. Hanczewski · A. Kaliszan
Chair of Communication and Computer Networks, Poznan
University of Technology, Polanka 3, 60-965 Poznań, Poland
e-mail: slawomir@hanczewski.pl

A. Kaliszan
e-mail: adam.kaliszan@put.poznan.pl

R. Szuman · Ł. Ogrodowczyk · I. Olszewski · M. Giertych
Poznań Supercomputing and Networking Center,
Noskowskiego 10, 61-704 Poznań, Poland
e-mail: rszuman@man.poznan.pl

Ł. Ogrodowczyk
e-mail: lukaszog@man.poznan.pl

I. Olszewski
e-mail: ict@iwolszewski.pl

M. Giertych
e-mail: mikus@man.poznan.pl

1 Introduction

Nowadays, one of the most important research topics of the
information and communication technologies (ICT) area is
Future Internet (Europe) named also as Internet 3.0 (US)
or New Generation Networks (Japan). The main challenge
of Future Internet is to solve well recognized limitations of
current internet. These limitations refer, among others, to
quality of service (QoS) guarantees for the following groups
of applications: content delivery, high resolution video (3D),
Internet of Things. Virtualization is a main technology which
has been considered for Future Internet [1]. This technology
allows to deploy IP-based and post-IP protocols in the same
physical network infrastructure for efficient handling of the
above-mentioned groups of applications as well as future
applications. An application of the virtualization technology
and post-IP protocols to a network requires a new architec-
ture. In this spirit, the Future Internet Engineering project
[2] designed the IIP architecture, which consists of 4 main
levels (Level 1– Level 4) [2]. Level 1: Physical infrastruc-
ture, Level 2: virtualization (creation of virtual nodes and
links), Level 3: Parallel Internets, Level 4: virtual networks
(VN). Based on logical separation of routing tables, VN can
be created for specific Parallel Internet (Level 4). As a con-
sequence the IIP architecture and the IIP system provides
two virtualization levels, Level 2 and Level 4. Finally, the
project developed three Parallel Internets (Level 3) above
phisical network infrastructure, which enables virtualization.
One Parallel Internet is IP-based and two Parallel Internets
are post-IP.

In this paper we focus on the IPv6 QoS Parallel Internet
and the IPv6 QoS system. In particular, we describe the fol-
lowing features of the IPv6 QoS system: (1) data and control
planes of the IPv6 QoS virtual node, and (2) Level 4 routing
dedicated for IPv6 QoS virtual networks. The prototype of

123

H. Tarasiuk et al.

the IPv6 QoS virtual node has been developed for the NP-3
EZchip programmable network processor (EZappliance) [3].
Exemplary test applications of the IPv6 QoS Parallel Inter-
net are Internet of Things applications as e-health (eDiab,
eAsthma, SmartFit,), public security (MobiWatch), Home-
NetEnergy, and e-learning.

The IPv6 QoS system applies main functional blocks of
NGN and DiffServ architectures [4–6] defined by ITU-T
and IETF, respectively. However, comparing with proposals
described in the literature e.g. [7–11] the system is a pro-
totype implementation of NGN and DiffServ over a virtual
infrastructure. Such a system requires to develop and imple-
ment: (1) new interfaces between Level 2 and Level 3 of the
IIP architecture, and (2) QoS mechanisms at packet and call
levels [12]. It also exploits such feature of the IPv6 protocol
as IPv6 in IPv6 tunnels to deploy routing in VN (Level 4).

Network virtualization was one of the topics of the
4WARD project [13]. 4WARD proposes VNet architecture
with a network virtualization concept. Comparing to our
approach the 4WARD concept includes only network nodes
operating on IPv4 protocol. It is dedicated to best effort net-
work only. Our approach, as we mentioned before, focuses
on the IPv6-based network (“IPv6 in IPv6 tunnels”) with
QoS guarantees for selected flows. For this purpose appro-
priate QoS mechanisms for QoS guarantees are deployed in
the network [12,14,15].

The IPv6 QoS virtual node separates data and control
planes. The most popular open platform, which also exploits
such a concept is Openflow [16]. For this purpose Openflow
defines a set of interfaces. However, based on our best knowl-
edge these interfaces are dedicated for the control plane only
and they does not support any QoS mechanisms. Therefore,
we propose a new set of interfaces between the data and con-
trol planes dedicated to the IPv6 QoS virtual node.

The investigated solution for the IPv6 QoS control plane
differs from the solutions used so far. The most common one
is a full virtualization of both, control and data plane. Such
an approach can only be used on devices supporting a full
virtualization. It requires significant reserves of CPU time,
discs and memory. A separation between data and control
planes enables independent implementation of control plane
entities from data plane hardware platforms. Our way of vir-
tualization of routing functions makes a considerable differ-
ence comparing to the existing solutions. The routing func-
tionalities are performed independently within one process.
This simplifies a management and decreases the hardware
requirements.

The paper organization is the following. Chapter 2 pro-
vides more details about the IPv6 QoS system. Chapter 3
describes a concept of routing and VN for this system. Imple-
mentation aspects of the IPv6 QoS node are discussed in
Chapter 4. Chapter 5 shows exemplary results of control
plane performances. Finally, Chapter 6 concludes the paper.

Fig. 1 IPv6 QoS architecture

2 IPv6 QoS system

This section describes principles of the IPv6 QoS Parallel
Internet. Specifically, we introduce general architecture of
the IPv6 QoS system and we present realization of the IPv6
QoS node in virtualization ecosystem provided by the IIP
system.

2.1 IPv6 QoS architecture

Figure 1 shows the proposed architecture of the IPv6 QoS
system that, as mentioned before, follows ITU-T and IETF
recommendations [4,5]. It is composed of transport stratum
and service stratum that are linked with management and
applications/services layers. Moreover, since the IPv6 QoS
system is deployed as one of the Parallel Internets (Level 2 of
the IIP architecture), it utilizes interface from virtualization
level (Level 2) and provides interface for virtual networks
Level 4) of the IIP system. We assume that the resource and
admission control functions (RACF) are performed for core
IP domain and for each access network independently, as
depicted in Fig. 1). Decided policy rules are then enforced in
the underlaying network nodes by the technology-dependent
PE-FE elements (Policy Enforcement Functional Entity).

2.2 Network node

Main functional elements of a prototype node of the IIP sys-
tem are depicted in Fig. 2. The IIP system enables coexistence
of different virtual nodes on the same physical node. Each
virtual node, comprised of data plane, control plane and man-
agement modules, operates autonomously. Moreover, the IIP
system provides performance isolation between nodes of
Parallel Internets [2]. As a consequence virtual nodes may
be based on different protocol stacks. The IPv6 QoS Paral-
lel Internet is based on the TCP/IP protocol stack, whereas
two other Parallel Internets, Data Stream Switching (DSS)

123

IPv6 QoS system implementation

Fig. 2 Functional diagram of
the system IIP node

Fig. 3 Prototype model of the IPv6 QoS network node

and Content Aware Networks (CAN), deploy different cus-
tomized protocol stacks.

The model of the IPv6 QoS Parallel Internet virtual node
is presented in Fig. 3. It is composed of: (1) data and con-
trol plane modules, and (2) IPv6 QoS adapter that constitutes
of control plane adapter and configuration and management
element. The PE-FE block depicted in Fig. 3 is a part of
the signalling system, that provides communication facility
between network elements. The control plane module may
be deployed in a separate network device (as depicted in
Fig. 3) or in the same device, as data plane module. Such a
flexibility allows to aggregate separate control plane mod-
ules. The aggregation of the control plane enables for signif-
icant simplification of the management process. The abstract
model of the IPv6 QoS virtual node applies to all network
platforms exploited in the IIP system [17], EZappliance [3],
NetFPGA [18], and XEN [19]. Nevertheless, in the follow-
ing chapters we present in details only the implementation
of EZappliance-based IPv6 QoS virtual node.

3 Routing and virtual networks

3.1 Routing

We assume that IPv6 QoS network users do not operate
directly on network resources of Level 3 of the IIP architec-

ture, but they operate on dedicated virtual networks’ (Level
4) resouces. This solution poses specific requirements on a
control plane module.

The first requirement is the need for topology abstraction
for VN, that operate on Level 4. The IPv6 QoS Parallel Inter-
net’s network consists of core routers (CRs) and edge routers
(ERs). The VNs are not aware of the Level 3 structure. The
only common element of the VNs and the IPv6 QoS Parallel
Internet are the ERs, which are connected to VN. Moreover,
from the viewpoint of the VN, nodes (ERs) are connected to
common link (star topology—Fig. 4). The CRs, that operate
on Level 3, are invisible on the Level 4.

The second requirement is the routing table for the Level
3 network. ER and CR nodes have a similar functionality
range to such nodes in current IP networks. Level 3 rout-
ing table is required in order to exchange packets between
ERs. VN on Level 4 are operable, after building topology
tree on routing table for IPv6 QoS Level 3 network. Sta-
ble path determination between ERs is essential for right
communication between those nodes. A difference between
curent network and the IPv6 QoS Parallel Internet is in
functionalities of edge nodes. ERs fulfill the routing func-
tions on Level 3 and at the same time act as the points,
that connect the VN from Level 4 with the network of
Level 3.

The third requirement is ensuring communication between
hosts in Level 4 VN. Each of the VNs is attached to different
client networks with different addressing scheme. In conse-
quence, each virtual node has its own unique link state data
base. In order to ensure communication between given parts
of VN, an appropriate number of dedicated routing processes
need to be launched in ERs. Each process should be isolated.
In the node, each separated routing proces owns virtual rout-
ing table.

The fourth requirement is virtual networks’ data sepa-
ration. The data separation technique is described in the
Sect. 4.2.

We considered three solutions for routing in the IPv6 QoS
network [20–25]:

– static routing,
– OSPFv3 routing protocol,
– special, dedicated routing protcol.

123

H. Tarasiuk et al.

Fig. 4 Topology of the IPv6
QoS Parallel Internet laboratory
network (L3), and exemplary
Virtual Networks (L4 VN1, L4
VN2 and L4 VN3)

Finally OSPFv3 protocol was chosen. The main reasons to
choose OSPFv3 protocol were: protocol stability, ready open
source code implementations and IPv6 protocol support. Sta-
tic routing does not guarantee the network stability on both
levels (three and four), when the topology or link state is
changing. Using static routing is not scalable and does not
fulfill the IIP project assumptions.

Unlike the OSPFv2, the OSPFv3 protocol was designed
to be independent of the protocol operating in the third
(network) layer of the OSI model. The OSPFv2 was only
intended for IPv4, so it became necessary to develop a next
version of the OSPF protocol to support IPv6. The OSPFv3
is also fit for routing path calculation in networks with the
new version of protocol operating in the network layer. The
OSPF protocol is characterized by stability and scalability.
The OSPFv3 specification is available for free [26]. There
are also available open source implementations of OSPFv3
protocol, e.g. Quagga [27] or Xorp [28].

Chapter 4.1 describes implementation details of the con-
trol plane for IPv6 QoS network.

3.2 Virtual networks

The virtual networks are formed using IPv6 QoS Parallel
Internet resources on Level 4 of the IIP architecture. All VNs
are formed by virtual network operator (VNO) for long time
period i.e. days, months, relying on service provider (SP)
demand for applications group e.g. e-health. Over one core
network domain two or more sites can be connected by VN.
The service/applications requirements, passed on from the
SP to the VNO, influence the VN forming process. The VN
creation, modification and removal are done by the VNO via

the management functionality offered by the IPv6 QoS sys-
tem. The appropriate set of nodes and links is provided by
parallel internet operator (PIO) to SP relying on the afore-
mentioned service/applications requirements. Various virtual
private network (VPN) services [29] can be used to create
VN. A VPN can be considered as a network service with a
set of tunnels between network end-points. This kind of net-
work offers traffic isolation and security depending on the
chosen technique. Different VPN services used on provider
edge nodes were considered. Finally, Level 3 VPN has been
chosen as a technique for the VN creation in the IPv6 QoS
Parallel Internet. The reason was that clients do not have to
use their own routing protocols because they are offered by
VN Provider. Level 3 VPN functions as an IP subnet which
interconnects user IP networks situated in different locations.
Each Level 3 VPN is using a separate virtual routing table
(VRF) on a provider edge router so the IP addresses between
VPNs do not have to be unique. There are many different
ways to build an IPv6 VPN, e.g. as BGP/MPLS VPNs [30] or
through various tunnels techniques acting on top of IP proto-
col. Unfortunately, due to a lack of complete IPv6 implemen-
tation for LSP creation the first approach needs a dual-stack
IPv4/IPv6. Therefore, we recommended to use VNs made of
tunnels, because we do not consider to use IPv4 protocol at
all, in our solution. Different protocols for packet tunnelling:
IPsec, IPv6 in IPv6 or generic routing encapsulation (GRE)
can be used to create the tunnels. However, it is important that
packets encapsulated by them can be visible as IPv6 packets
in the core network.

To fulfil requirements, we have selected IPv6 in IPv6
encapsulation mechanism [31] without any additional
packet encryption (IPsec), as it is simpler solution for

123

IPv6 QoS system implementation

Fig. 5 IPv6 in IPv6 tunnel
header example

implementation than GRE packets. Since this approach fol-
lows the Generic Packet Tunnelling in IPv6 Specification
[32] and it only exploits standard features of IPv6 protocol,
there are no other requirements for using additional proto-
cols or packet types. Each packet incoming from access net-
works is encapsulated with additional IPv6 header that con-
tains source and destination addresses of tunnel end-points.
The traffic class field is copied from the headers of incom-
ing IPv6 packet to encapulation IPv6 headers. The advan-
tage of this method is the fact that packets’ payload does
not have to be analysed in the core network nodes reduc-
ing packet processing time. Moreover, “Flow Label” field
in the outer packet header contains a numeric identifier of
VN to distinguish traffic and QoS parameters between dif-
ferent VNs. System management is responsible for assign-
ing unique value of the VN identifier during the VN creation
process.

In the proposed solution we assume that every client’s IP
packet is encapsulated in the packet with a new IPv6 outer
header (as it is depicted in Fig. 5). In this new header for
each packet the Source Address field contains an IP address
of ingress edge router - tunnel entry point node while the
destination address field contains IP address of egress edge
router - tunnel exit point node. The traffic class field value is
copied from original (client) packet header to the new header
without any modification enabling CR to treat such a packet
properly without inspecting inner IP header. Virtual network
identifier is stored in the Flow Label field of the outer header.
Entire field (20 bits) is reserved for this number. The value
of Hop Limit field is initially set to 32 by ingress edge router
(tunnel entry point) and it is decreasing by 1 on each core
network router on the path passing this packet. The remaining
fields: version, payload length and next header will fulfil IPv6
specification [31]. In the inner IP header the Hop Limit field
is decremented only by ER so the core network infrastructure
is not visible from client hosts. Other fields in original header
remain unchanged.

To manage properly such VN a dedicated management
architecture has been designed. The Level 4 of this man-
agement system architecture is shown in Fig. 6. It consists
of three functional modules which are responsible for VN

management. virtual network acceptance (VNA) component
running on the Level 3 management creates separate instance
of the Level 4 sub-system to manage particular VN. Single
Level 4 management instance representing single VN con-
sists of instances of: routing management (RM), resource
and topology management (RTM), and virtual network sta-
tus management (VNSM).

RTM is the module on the Level 4 management sub-
system mainly responsible for maintaining the logical topol-
ogy, other related resources and information about VN. Sin-
gle instance of the RTM is related to the single instance of
the virtual network and all the operations are limited to this
particular VN. It interacts with other Level 4 management
modules—RM and VNSM—as a data provider. RTM pro-
vides the VN topology including such parameters like: list
of ER belonging to the specified VN, IP addresses of Level
4-ER connecting client networks and links between Level
4-ER with information about their capabilities.

RM is a module responsible of routing maintenance on
VN level. Similary to RTM single instance of the RM is
related to the single instance of the virtual network and all
operations are limited to appropriate VN. It also interacts
with RTM and VNSM Level 4 management modules and
also L3 management modules.

The next module of the Level 4 management system is
VNSM. Single instance of VNSM is related only to the sin-
gle instance of the virtual network and all operations are
limited to selected VN. It cooperates with neither other run-
ning VNSMs nor different VNs. For the proper working
VNSM requires connectivity with virtual network (for per-
forming active monitoring) and access to its ERs (for ana-
lyzing nodes counters and active tests commissioning). The
component functionality is focused on the monitoring of the
actual state of the entire VN, i.e. its elements including virtual
nodes, links, connectivity to the client networks. However,
the implementation of this module is expected in the extended
version of our system.

Access to the Level 4 management system is available
through the dedicated web interface for VN users and it
allows to perform all VN operations. In particular it allows
to monitor network topology and routing maintenance.

123

H. Tarasiuk et al.

Fig. 6 VN management
modules and interfaces

4 Implementation aspects of IPv6 QoS edge node

4.1 Control plane

The control plane (CP) implementation for the IPv6 QoS net-
work node was divided into several steps. In the first step, the
base (reference) implementation was chosen. As it was men-
tioned in chapter 3.1, CP functions are handled by software
router. Such a router has to fulfill the following requirements:

– stability,
– OSPFv3 protocol support,
– possibility of its modification in order to distribute its

modules that operate on separate machines.

The initial idea involved the use of one of the software routers:
XORP [28] or Quagga [27]. However, having considered the
router stability and the OSPFv3 implementation issues Qua-
gga was chosen. Another reason for this decision is the fact
that Quagga is the most common routing protocol software
distribution employed by software router producers, and it is
written entirely in C. The CP built for the IPv6 QoS network
was based on the Quagga in version 0.99.18 (releaseded on
23.03.2011).

The next step was modification of Quagga implementa-
tion, that let the router working according to our specification.
The implementation includes the following modifications:

– Quagga modification, that enables possibility of launch-
ing Quagga modules on remote machine (virtual or phys-
ical).
The remote machine with CP is outside data plane (DP).
The Quagga software architecture is module oriented.
CP functionality is implemented in modules that handle
routing protocols, e.g. ospf6d module is responsible for
OSPFv3 protocol. Zebra module intermediates between
DP (Linux Kernel) and CP modules. The Zebra mod-
ule was called control plane adapter monitor (CPAM) in

the IIP project. Zebra protocol [33] provides DP abstrac-
tion, that is DP’s architecture independent. Zebra proto-
col messages may be exchanged via local sockets or TCP
sockets. In order to enable possibility of CP module dis-
tribution, Zebra server rules modification was required.
This modification lets the server to accept connection
from remote machine. Previously only local connec-
tions were accepted. CP module modification was also
required. Each CP modules has a direct access to DP
interfaces. By using Berkley socket API, the modules
were sending and receiving routing protocol messages.
Therefore, it was necessary to add new control plane
adapter transceiver (CPAT) module, that is responsible
for providing access for CP module to DP interfaces on
remote machine. The messages between CP and CPAT
are exchanged using control plane adapter transceiver
protocol (CPA-TP). Figure 7 shows modified Quagga
architecture.

– Implementation of multiple routing protocol instances
within one CP (ospf6d) process. First routing instance
is dedicated for IPv6 QoS network that operates on the
Level 3. Other routing instances are dedicated for VN on
Level 4. Each network has its own Virtual Routing Table.

– CPA-MP [34] and CPA-TP protocols modification that
enables the support of VN. Each message has a field, that
specifies the network number. Value 0 is for IPv6 QoS
Level 3 network and the rest is for Level 4 VN.

Moving CP to remote machine was very important. It guar-
antees a full abstraction between DP and CP that is hardware
independent. There are three different DP devices (NetF-
PGA, EZappliance, XEN). The DP devices are treated by
CP in the same way. It is possible, because a communication
between the software router and DP device is implemented
through additional CPAM and CPAT module (Fig. 7). To pro-
vide communication between DP and CP, two TCP connec-
tions are established. The first connection operates on 2600

123

IPv6 QoS system implementation

Fig. 7 Control plane and data
plane communication

port and forwards CPAM (modified Zebra protocol) mes-
sages. The second connection performs on 2700 port and
intermediates in exchanging routing protocol massages via
CPA-TP protocol. Such an approach allows the scenario that
the CPs of all nodes are on the same machine. The described
implementation does not prohibit launching of CP on the DP
machine.

4.2 Data plane

The IPv6 QoS adapter (adapter) acts as a middleware between
CPA module in control plane, and EZproxy (HostCPU) and
NP3 network processor in data plane (see Fig. 3). CPA sup-
ports modified zebra protocol (CPA-MP) to share informa-
tion about EZappliance data plane interfaces, routerID para-
meter and static routing entries for both Level 3 and Level
4 instances. This module acts also as an OSPFv3 packets
modifier and transmitter that: (1) writes appropriate values
in TrafficClass and FlowLabel fields in the header, and (2)
handles OSPFv3 packet tunneling for Level 4. The Adapter
also contatins the Configuration and Management module. It
provides command line interface (CLI) towards PE-FE mod-
ule from transport stratum of NGN [35] architecture. CLI is
used for the node configuration. Whole Adapter’s configu-
ration of EZappliace is maintained in configuration file in
JavaScript object notation (JSON) format and commited to
network processor on demand. API provided by NP-3 proces-
sor is used for configuration. Search structures of NP-3 are
adopted to be used as L3 and L4 (VRF) routing tables. They
also play roles of classifiers and configuration tables. Adapter
is implemented on the external Linux server. The common

object request broker architecture (Corba) [36] technology
is used for inter-modules communication in the distributed
edge node architecture. Network processor is responsible for
all data plane operations assigned to Edge Router i.e. classi-
fication, two-level routing, policing, shaping, scheduling and
IP in IP tunnel termination. Shaping and scheduling are per-
formed by built-in configurable traffic manager while other
operations are performed by programmable task optimized
processors (TOPs). Only OSPF packets are transmitted via
adapter to proper OSPF instance.

The assumed virtualization technology impacts on the
implementation of the network processor part in the IPv6
edge node. The IIP system provides a virtualization layer
which is the base for higher level implementations. The result
of this solution is a separation from physical layer. Therefore,
the implementation of the IPv6 QoS virtual node is unaware
of physical ports and links. Instead, virtualized resources are
presented as independently numbered virtual ports. Addi-
tional processing before and after IPv6 router code is a result
of this abstraction.

EZappliance NP-3 network processor consists of 5 pro-
cessing stages (TOPs): parse, search I, resolve, search II and
modify. The initial part of virtualization processing is per-
formed on first stage (TOPparse). This allows IPv6 router
code to start processing in TOPparse already having infor-
mation about ingress virtual port for each packet. Because of
NP3 architecture the second part of virtualization process-
ing has to begin in third stage (TOPresolve). For this reason
the number of virtual port for egress needs to be specified
by IPv6 code in TOPresolve. All decisions related to packet
classification and routing must be taken in TOPresolve. The

123

H. Tarasiuk et al.

limitation of processing stages available for crucial parts
of IPv6 router implementation affects its efficiency and
hence performance of the entire solution. Availability of only
one search stage (i.e. TOPsearch I) for IPv6 QoS process-
ing results in high logical parallelization of search queries.
Some of performed search operations frequently appear to
be unnecessary because of the results of other searches per-
formed in parallel. Virtualization also has its advantages. Vir-
tual link can transfer IP packets directly allowing IPv6 code to
be unaware of link layer technology. This makes the IP layer
completely independent from lower layers. Therefore, there
is no need to keep IP-MAC mapping tables, hence neighbour
discovery protocol (NDP) is also used in a much lesser extent.

5 Exemplary results

The evaluation of the presented solution can be done accord-
ing to its efficiency and resources requirements. The effi-
ciency depends on the functioning of DP and has a direct
influence on the QoS parameters. For the DP evaluation, the
QoS parameters are the primary criteria. For the evaluation
of the routing implementation the main criteria are resources
requirements that include: operating memory, disk memory
and processor time (CPU load).

The effective resources management is conducive to an
increase in the system flexibility and, consequently, makes
it possible to support more virtual machines. The Sect. 5.1–
5.4 show the utilized resources with the application of the
solution presented in the paper. In addition, the influence of
moving the CP to a separate machine is considered.

5.1 CPU resources

The main implementation criterion was efficiency followed
by the CPU uniform time distribution between the routing
processes of each virtual network. This was made possible
by an extensive use of libraries elaborated for the Quagga
project. An appropriate library was written specifically for
the purposes of the project, which supported multitasking.
Technically, multitasking was implemented with the help of
co-routines. Co-routines are executed according to the FIFO
algorithm and, consequently, the starvation free flow control
process is secured (no influence between routing processes).
The command interpreter of each Quagga module (includ-
ing the module supported by the OSPFv3 protocol) contains
a command that shows statistics with the co-routines that
load the system most. The operating system sees all routing
processes as one process, which provides a number of advan-
tages. The operating system executes fewer commands. Task
switching at the application level is much faster than switch-
ing a task context by the operating system. Another advantage
is the possibility to determine how heavily the CPU is loaded

Fig. 8 Example of the results of the top command

by the process supporting CP and how much memory is used
by this process. These statistics are available by using the
top system command (Fig. 8).

During the tests, the CPU load was lower than 1 %. As
the load relies on the intensity with which Control Plane
messages (OSPFv3 messages) are exchanged between IPv6
QoS nodes, it is a function Eq. (1) of two parameters: K and
N , where parameter K is the number of nodes and parameter
N is the number of VN:

L ≈ K N + C. (1)

The constant parameter C refers to the operating system
itself. A single machine is enough for the presented con-
cept, which eliminates the necessity of setting up separate
virtual machines for each virtual network.

Taking into account the fact that K N << C , the com-
putational complexity order is equal to �(C) and does not
depend on the number of VN. In the solution with the virtual
nodes applying to Level 4 (edge router), the load equals

L ≈ K N + NC, (2)

therefore, the computational complexity is equal to
�(NC), which means that it is proportional to the number
of virtual networks.

5.2 Memory resources

The maximum number of virtual machines is limited by the
available system memory resources. The machines cannot
share common memory resources nor can they occupy the
memory to a higher extent than the whole system has to
offer. Consequently, this means that the memory occupied by
one virtual network cannot be used by other networks. The
memory allocated to each machine should have some amount
of headroom to spare, in case memory resources are poorly
used. Memory of the machines involved is consumed by the
operating system kernel and by the CPU process, among oth-
ers. The Quagga software router implementation provides a
possibility to monitor memory allocation. Memory alloca-
tion, in turn, depends on the number of neighbours and VN.

The show command is one of the many commands avail-
able in the interpreter of a process supporting the CPU. The
show command is used to display detailed information on
the allocations of the memory. A demand on memory via
CPU software starts out with a half a megabyte of memory.
This demand (as in the case of CPU) is a function of two
parameters: N and K . It is, however, the minimum increase,

123

IPv6 QoS system implementation

so the memory resources do not restrict the system. The state
of the machine memory on which CPU is running can be also
monitored through the top command.

In order to estimate memory requirements in relation to
the number of nodes involved, numerous measurements were
conducted in the study. Each node was composed of two
interfaces. One interface was connected to the same link as
the remaining nodes. The other supported connections with
the client network. The measurements carried out in the study
prove that a process of connecting a new node consumes
about 4 KB of memory. The procedure does not entail any
problems, so one may assume that the system is not restricted
by memory resources.

5.3 Disc resources

Most likely, the demand for disc resources will remain stable,
not relying on the number of VN. A separate configuration,
stored in 1 kB memory, is required for each network. In addi-
tion, event logs can be stored for each of the configured virtual
networks. The latter option may be disabled, however, when
an appropriate configuration is being used.

5.4 Signalling messages delay

Moving the control plane module to another machine results
in minimal delays in sending signalling messages. On the
assumption that Node A sends an OSPF hello packet to a
neighboring Node B, the packet passes through 3 points, tra-
versing the network. It is first transmitted from CP to CPA.

First, it is sent between CP and CPA. Then, CPA sends
the packet via the DP interface of Node A to DP interface
of Node B. Next, the message is being transferred between
CPA and CP in Node B. Such a solution might seem to have
only disadvantages when we consider a situation in which
sending of messages of a routing protocol is involved. Still,
it does offer some advantage in the case of many networks
as it enables CP to carry out blocking operations that stop
the process from the moment of sending the packet. The
CP-CPA link is not loaded and makes fast packet sending
(without any delays) possible. The CPA serves as a buffer
for these messages.

Sending an OSPF packet may take a while, as the link
between the two nodes might be loaded. However, in the
proposed solution this feature has no impact on the CP oper-
ation. Therefore, moving of the Control Plane module to a
dedicated (separate) machine, without a direct access to inter-
faces of Data Plane device, has no important influence in the
performance of a node and on delays in sending messages.

What has resulted from the tests taken in PL-Lab network
[37] (see Fig. 4) using ping6 command is that the average
response time between CP and CPA machine is 0.23 ms.

More complicated is mesuring of routing protocol mes-
sage delay between CPA that is transmitting routing mes-
sage and CPA that is receiving this message. The mean delay
in bidirectional transmission between node A and node B
we can obtain in a following way. Let’s assume, that TA→B

means an average delay of messages send by A to B and a
TB→A means an average delay of messages send by B to
A. Under assumption that the number of the messages sent
between nodes A and B in both directions (from A to B, and
form B to A) is the same, an average delay is equal to:

TA↔B = (TA→B + TB→A) /2. (3)

Let’s now consider the caltulating method of the delay
tA→B(n) in sending n-th packet from A to B. Let’s assume
the following notation: t→A(n) is a time of receiving n-th
packet in A node’s CPT in order to sent it to node B and
tB→(n) is a time of sending by B node’s CPA received packet
to its CP. Tle local clocks in nodes are not ideally synchro-
nized, as this is impossible. Let ξA,B(n) be a relative time’s
synchronization error between clocks in node A and B, that
determines clock’s A delay in comparison to clock B, when
the n-th packet is sent. It can be written:

tA→B(n) = tB→(n) − t→A(n) + ξA,B(n), (4)

tB→A(n) = tA→(n) − t→B(n) − ξA,B(n). (5)

The mesurements were teken analzing the delay of hello
message. Those packets are sent alternately by each node,
therefore, we can assume that if A sends to B a packet num-
ber n, the node B sends to node A a packet number n + 1.

TA↔B = 1/k
k∑

n=1

tA→B(2n) + tB→A(2n + 1)

2
. (6)

Substituting Eq. (6) into the Eqs. (4) and (5), we obtain:

TA↔B = 1/k
k∑

n=1

tB→(2n) − t→A(2n) + ξA,B(2n)

2
+

+1/k
k∑

n=1

tA→(2n+1) − t→B(2n + 1) − ξA,B(2n + 1)

2
.

(7)

If we assume, that relative clock error is a slow changing
function, we can write:

ξA,B(n) = ξA,B(n + 1). (8)

Therefore, the Eq. (8) may be transformed in a following
way:

TA↔B

=
k∑

n=1

tB→(2n)−t→A(2n) + tA→(2n + 1)−t→B(2n+1)

2k
.

(9)

123

H. Tarasiuk et al.

Fig. 9 Wireshark with plugin
capable to parse CPA-TP

According to the Eq. (9), while measuring an average delay
in sending the packets between A and B in both directions,
the influence of an error in synchonization of the clocks has
been eliminated.

The undertaken tests have proven that an average delay
between any two edge nodes, being a part of the given Vir-
tual Network, oscillates between 0.2 and 0.4 s. Such a delay is
related to an early CR’s CPA implementation stage. The delay
in question refers only to the messages exchanged by rout-
ing protocol and is significantly bigger than the data packets
delay exchanged by the L4 VN.

The delay does not influence an efficiency of Data Plane
functioning. In accordance with the rules of software engi-
neering, the main emphasis in the first stage of implementing
works is put on reliability. Along with the next versions the
efficiency is being increased so that the final version can offer
the full efficiency. The plugin for Wireshark program, written
for the tests, has facilitated the conduction of measurements
on delay in sending the messages between CPA edge routers.
This plugin enables an analysis of the OSPFv3 protocol mes-

sages, sent in data field of CPA-TP protocol. Fig. 9 presents
program Wireshark monitor with an additional plugin. On
the figure a message of CPA-TP protocol is visible The Wire-
shark program makes it possible to filter the received mes-
sages, so we are able to search for OSPF messages with the
precised sender and receiver address. Thanks to an appro-
priate filter configuration, we are able to display the received
OSPF Hello messages, sent by A node. This filter is described
as follows: ipv6.addr == FE80:2012:1::A and ipv6.addr ==
FF02::5, where FE80:2012:1::A is an IPv6 node’s A address
and FF02::5 is multicast, destination address. This enables a
conduction of simple analysis. It should be mentioned, that
OSPFv3 algorithm enables including of delays in the config-
uration of interfaces.

6 Summary

The paper proposes a novel approach for implementation of
the IPv6 QoS system as one of the Parallel Internets in the

123

IPv6 QoS system implementation

virtualized network environment. Such an approach requires
to adopt well known IPv6 QoS system to the virtual environ-
ment. Moreover, the IPv6 QoS network node is based on the
separation of data plane and control.

Therefore, the proposed solution is based on the hardware
independent model of virtualized IPv6 QoS network node,
which exploits the concept of data and control plane sepa-
ration. The model is deployed exploiting hardware (EZap-
pliance, NetFPGA) and software (XEN) platforms for data
plane. For simlicity of description, we focus only on EZappli-
ance implementation and Linux-based control plane. Thanks
to hardware implementation of data plane, it is possible to
achieve wire-speed processing of data packets. Moreover, the
paper provides the resource and efficiency requirements of
the control plane implementation.

The developed control plane software will be publicly
available in the near future [38].

Acknowledgments This work has been partially supported by the
Polish Ministry of Science and Higher Education under the European
Regional Development Fund, Grand “ Future Internet Engineering”, No.
POIG.01.01.02-00-045/09-00. We would like to thank our colleagues
for their contriribution to the project and valuable discussions.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. ITU-T Rec. Y.3001 (2011). Future networks: Objectives and design
goals. ITU Telecommunication Standardisation Sector.

2. Burakowski, W., Tarasiuk, H., Beben, A., Danilewicz, G. (2012).
Virtualized network infrastructure supporting co-existence of Par-
allel Internet. In in Proceedings of 13th ACIS international con-
ference on software engineering, artificial intelligence, networking
and parallel/distributed computing (SNPD) (pp. 679–684). Japan:
Kyoto.

3. Ezappliance. http://www.ezchip.com
4. ITU-T Rec. Y.2111. (2008). Resource and admission control func-

tions in next generation networks. ITU Telecommunication Stan-
dardisation Sector.

5. Blake, S. et al. (1998). An architecture for differentiated service.
RFC 2475 (Informational), Internet Engineering Task Force.

6. Mantar, H. A. (2007). A scalable QoS routing model for diff-
serv over MPLS networks. Telecommunication Systems, 34(3—-4),
107–115. (2007).

7. Burakowski, W., et al. (2011). The IP QoS system. Journal of
Telecommunications and Information Technology, 3, 5–11. 2011.

8. Klincewicz, J. G., Schmitt, J. A., & Wong, R. T. (2002). Incorpo-
rating QoS into IP enterprise network design. Telecommunication
Systems, 20(1–2), 81–106.

9. Wang, S., Xuan, D., Bettati, R., & Zhao, W. (2010). Toward statis-
tical QoS guarantees in a differentiated services network. Telecom-
munication Systems, 43(3–4), 253–263.

10. Bak, A., et al. (2003). A framework for providing differentiated
QoS guarantees in IP-based network. Computer Communications,
26(4), 327–337.

11. Burakowski, W., et al. (2008). Provision of end-to-end
QoS in heterogeneous multi-domain networks. Annales des
Telecommunications-Annals of Telecommunications, 63(11–12),
559–577.

12. Bernet, Y., et al. (2002). An informal management model for diff-
serv routers. RFC 3290 (Informational), internet engineering task
force.

13. Papadimitriou, P., et al. (2009). Implementing network virtualiza-
tion for a future internet. In Proceedings of 20th ITC specialist
seminar. Hoi An, Vietnam.

14. Burakowski, W., & Tarasiuk, H. (2003). Admission control for TCP
connections in QoS IP network. In C.-W. Chung, et al. (Eds.), Pro-
ceedings of the Human.Society@Internet, Web and communica-
tion technologies and internet-related social issues (pp. 383–393).
Berlin: LNCS 2713, Springer.

15. Braun, T., Diaz, M., Enriquez Gabeiras, J., & Staub, T. (2008). The
EuQoS system. In M. Diaz (Ed.), End-to-end quality of service
over heterogeneous networks (Vol. 6). Berlin: Springer.

16. Mckeown, N., et al. (2008). Openflow: Enabling innovation in
campus networks. ACM SIGCOMM Computer Communication
Review, 38(2), 69–74.

17. Chydzinski, A., Rawski, M., Wisniewski, P., Adamczyk, B.,
Olszewski, I., Szotkowski, P., Chrost, L., Tomaszewicz, P.,
Parniewicz, D. (2012). Virtualization devices for prototyping of
future internet. In Proceedings of 13th ACIS international confer-
ence on software engineering, artificial intelligence, networking
and parallel/distributed computing (SNPD) (pp. 672–678). Japan:
Kyoto.

18. Gibb, G., et al. (2008). Netfpga - an open platform for teaching how
to build gigabit-rate network switches and routers. IEEE Transac-
tions on Education, 51(3), 364–369.

19. Xen project. http://www.xen.org
20. Kim, D., & Tcha, D. (2000). Scalable domain partitioning in

internet OSPF routing. Telecommunication Systems, 15(1–2),
113–127.

21. Schmid, A., & Steigner, C. (2002). Avoiding counting to infinity
in distance vector routing. Telecommunication Systems, 19(3–4),
497–514.

22. Chakraborty, D., Zabir, S., Chayabejara, A., & Chakraborty, G.
(2004). A distributed routing method for dynamic multicasting.
Telecommunication Systems, 25(3–4), 299–315.

23. Brostrø̈m, P., & Holmberg, K. (2009). Design of OSPF networks
using subpath consistent routing patterns. Telecommunication Sys-
tems, 41(4), 293–309.

24. Rak, J., & Walkowiak, K. (2013). Reliable anycast and unicast
routing: Protection against attacks. Telecommunication Systems,
52(2), 889–906.

25. Grajzer, M., Zernicki, T., & Glabowski, M. (2012). ND++—an
extended IPv6 neighbor discovery protocol for enhanced stateless
address autoconfiguration in MANETS. International Journal of
Communication Systems, 27(10), 2269–2288.

26. Coltun, R., Ferguson, D., Moy, J., Lindem, A. (2008). OSPF for
IPv6, RFC 5340 (Proposed Standard), internet engineering task
force.

27. Quagga project. http://www.quagga.net/
28. Xorp project. http://www.xorp.org/
29. Andersson, L., Madsen, T. (2005). Provider provisioned virtual

private network (VPN) terminology. RFC 4026 (Informational),
Internet Engineering Task Force.

30. Rosen, E., Rekhter, Y. (2006). BGP/MPLS IP virtual private net-
works (VPNs). RFC 4364 (Proposed Standard), internet engineer-
ing task force by RFCs 4577, 4684, 5462.

31. Deering, S., Hinden, R. (1998). Internet protocol, version 6 (IPv6)
specification, RFC 2460 (Draft Standard), Internet Engineering
Task Force.

123

http://www.ezchip.com
http://www.xen.org
http://www.quagga.net/
http://www.xorp.org/

H. Tarasiuk et al.

32. Conta A., Deering, S. (1998) Generic packet tunneling in IPv6
specification RFC 2473 (Proposed Standard), Internet Engineering
Task Force.

33. Kaliszan, A., Glabowski, M., Hanczewski, S. (2012). A didactic
platform for testing and developing routing protocols. In Proceed-
ings of the eighth advanced international conference on telecom-
munications (AICT). Stuttgart, Germany.

34. Kaliszan, A., Hanczewski, S., Glabowski, M., Stasiak, M.,
Zwierzykowski P. (2012). Routing and control plane in the par-
allel internet IPv6 QoS. In Proceedings 8th international sympo-
sium on communication systems, networks digital signal process-
ing (CSNDSP). Poznan, Poland.

35. ITU-T Rec. Y.2001. (2001) General overview of NGN. ITU
telecommunication standardisation sector.

36. OMGs Corba website. http://www.corba.org
37. Krzywania, R., Dolata, Ł., Krawiec, P., Latoszek, W., Szymanski,

A., Wszołek, J., (2012). Polish Future internet distributed labo-
ratory. In Proceedings of 13th ACIS international conference on
software engineering, artificial intelligence, networking and par-
allel/distributed computing (SNPD) (pp. 666–671). Japan: Kyoto.

38. IIP project. http://www.iip.net.pl

Halina Tarasiuk received the
M.Sc. degree in computer sci-
ence Szczecin University of
Technology, Poland, in 1996 and
Ph.D. degree in telecommuni-
cations from the Warsaw Uni-
versity of Technology, in 2004.
From 1998 she is with Telecom-
munication Network Technolo-
gies Group at the Institute
of Telecommunications, Warsaw
University of Technology. From
2004 she is an assistant profes-
sor at the Warsaw University of
Technology. From 1999 to 2003

she was collaborated with Polish Telecom R&D Centre. She participated
in several European and national projects (2000–2013). Her research
interests focus on Future Internet, NGN and NWGN architectures, node
and network virtualization, signalling system performance, admission
control and resource allocation methods and queueing mechanisms.

Sławomir Hanczewski received
M.Sc. and Ph.D. degrees in
telecommunications from Poz-
nan University of Technology,
Poland, in 2001 and 2006,
respectively. Since 2007 he has
been working in the Faculty of
Electronics and Telecommunica-
tions, Poznan University of Tech-
nology. He is an Assistant Pro-
fessor in the Chair of Communi-
cations and Computer Networks.
He is the author, and co-author,
of more than 50 scientific papers.
He is engaged in research and

teaching in the area of performance analysis and modelling of queu-
ing systems, multiservice networks, switching systems and computer
networks.

Adam Kaliszan received the M.
Sc., Ph. D. degrees in telecom-
munication from the Poznan
University of Technology (PUT),
Poland, in 2005, 2010, respec-
tively. Since 2008 Adam Kaliszan
has been working in the Depart-
ment of Electronics and Telecom-
munications, PUT. He is engaged
in research and teaching in the
area of programming and oper-
ating systems. He works also as
developer in research projects.
Adam Kaliszan is the author/co-
author of 30 papers which have

been published in communication journals and presented at national
and international conferences. Adam Kaliszan is teaching in Poznan
University of Technology largely focuses on the M.Sc.in Telecommu-
nication where he gives lectures and conducts laboratory courses on
Operating Systems, Network Embedded Systems, Programming in C++
and C#. Adam Kaliszan also participates in industrial education acting
as a lecturer in courses on programming.

Robert Szuman graduated from
Poznan University of Tech-
nology in 2000 and got the
M.Sc. degree in Computer Sci-
ence (Databases and Networks
Designing). Since 1999, he has
been co-operating with Poznan
Supercomputing and Network-
ing Center (PSNC), where he
started work in the Network
Department as a Network Man-
agement Systems Administrator.
Now he is working as a Net-
work Specialist in PSNC. His
main fields of research interests

are network management systems administration and configuration,
broadband and optical networks monitoring, Quality of Service in com-
puter networks, traffic analysis and measurement technologies, network
management protocols, tools and procedures used by the Network Oper-
ation Center (NOC).

Łukasz Ogrodowczyk received
the M.Sc. in the Electronics
and Telecommunications, major-
ing in the Networks of Infor-
mation Transport, from the Poz-
nan University of Technology
in 2007. From 2010 he works
in Poznan Supercomputing and
Networking Center. Co-author
of some papers for international
conferences (e.g. CSNDSP, Net-
works, Terena). He was involved
in the Polish project Future Inter-
net Engineering. Currently he
works in the international FP7

project ALIEN. Lukasz is familiar with embedded systems, some pro-
gramming languages like C and Python, network protocols and Quality
of Service in next generation packet networks.

123

http://www.corba.org
http://www.iip.net.pl

IPv6 QoS system implementation

Iwo Olszewski received the
M.Sc. degree in Computer Sci-
ence, majoring in the Computer
Networks and Distributed Sys-
tems, from the Poznan Univer-
sity of Technology in 2010. He
started working in PSNC in 2006
as an network operator in PIO-
NIER NOC. In 2010 he has
joined the NGN Team as an ana-
lyst/developer. He has experi-
ence in object-oriented program-
ming in Java and C# and deep
knowledge about network proto-
cols and devices. He is familiar

with EZchip network processors and Juniper Junos platform develop-
ment. He was involved in the national project “Future Internet Engineer-
ing” and FP7 projects NOVI and ALIEN. Co-author of several papers
in conference proceedings (CSNDSP, NETWORKS, SNPD, TNC).

Michał Giertych received the
M.Sc. degree in Computer Sci-
ence from Adam Mickiewicz
University in 2004. After grad-
uating he has been working for
Pozna Supercomputing and Net-
working Center as a software
developer and computer systems
analyst. He has been involved
in European GANT, Bon-FIRE
and Polish national FIE projects.
His main areas of interest are
design, implementation and test-
ing applications for distributed
network and federated cloud
environments.

Piotr Wiśniewski is a Ph.D. stu-
dent at the Institute of Telecom-
munications at the Warsaw Uni-
versity of Technology, where
he received his M.Sc. (2010)
and B.SC. (2009) degrees in
Telecommunications. He is a
research and teaching assistant at
the Warsaw University of Tech-
nology and a specialist at the
National Institute of Telecom-
munications. His research inter-
ests include network virtualiza-
tion, Quality of Service, Infor-
mation Centric Networks and
Software Defined Networks.

123

	The IPv6 QoS system implementation in virtual infrastructure
	Abstract
	1 Introduction
	2 IPv6 QoS system
	2.1 IPv6 QoS architecture
	2.2 Network node

	3 Routing and virtual networks
	3.1 Routing
	3.2 Virtual networks

	4 Implementation aspects of IPv6 QoS edge node
	4.1 Control plane
	4.2 Data plane

	5 Exemplary results
	5.1 CPU resources
	5.2 Memory resources
	5.3 Disc resources
	5.4 Signalling messages delay

	6 Summary
	Acknowledgments
	References

