
0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2577360, IEEE Journal
on Selected Areas in Communications

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ??, NO. ?, APRIL 2016 1

Adaptive Video Streaming: Rate and Buffer
on the Track of Minimum Re-buffering

Jordi Mongay Batalla, Piotr Krawiec, Andrzej Beben, Piotr Wisniewski, and Andrzej Chydzinski

Abstract—New trends of the Future Internet aim to overcome
the best effort service and offer guaranteed service to the users.
Guarantees should be acquired not only at the network level
but also at higher layers in order to deliver the best quality
of experience. This paper presents a new approach for HTTP-
compliant adaptive applications. This solution fulfils guarantees
of maximum rebuffering probability even in highly variable
environments as the Future Internet seems to be. Guaranteed
low rebuffering improves visibly the user’s quality of experience
during multimedia events. The tests performed confirmed that,
unlike rate-based adaptation algorithms, our solution ensures
maximum rebuffering and it decisively reduces rate switches in
comparison to buffer-based adaptation algorithms.

Index Terms—QoE, HTTP-compliant streaming, media adap-
tation, queueing models, stream switching, fluid flow modelling

I. INTRODUCTION

ONE of the objectives of the future internet in multime-
dia streaming is to offer service guarantees, which are

directly related with the willingness of the users to use the
network for these services. Therefore, it is crucial to provide
guarantees of the service in all the layers from network to
application and for all the actors from service providers to
consumers [1].

In this paper, we analyse the behaviour of adaptive video
clients and argue that current adaptation algorithms are not
committed to introduce guarantees during the video playout.
Furthermore, we note that their role is limited to do their
best in front of network variability and difficultly manage
the bandwidth follow-up reacting improperly to the punctual
variations. Taking into account that some mechanisms present
in the future internet introduce high variability in the network
(e.g., dynamic caching, multi-source multi-path streaming,
etc.), advanced adaptation algorithms should be launched.

Our paper proposes a new adaptive solution, called Adap-
tation & Buffer Management Algorithm (ABMA), which en-
sures that the rebuffering probability is under given threshold
during the video streaming. Rebuffering creates video image
freezes, which are the main impediment in video quality of
Experience (QoE). The proposed adaptation solution adjusts
the queue size for absorbing short-time network variability

Manuscript received May 28, 2015; revised November 29, 2015. This work
was supported in part by the European CHIST-ERA DISEDAN project under
Grant ERA-NET-CHIST-ERA-II/01/2014.

J. Mongay Batalla, P. Krawiec and P. Wisniewski are with Warsaw Uni-
versity of Technology and National Institute of Telecommunications, Warsaw,
Poland (e-mail of the correspondig author: jordim@interfree.it).

A. Beben is with Warsaw University of Technology, Warsaw, Poland.
A. Chydzinski is with Silesian University of Technology, Gliwice, Poland.
Digital Object Identifier ???

while allowing streaming rate switching for adapting to long-
time bandwidth variability.

The preliminary idea of ABMA was presented in [2].
However, the model presented there was not solved and the
algorithm was based on numerical solution with high computa-
tional cost, which prevented its use in most of the devices. The
complete version of ABMA (including mathematical analysis
and solution) presented here may be fully implemented in
medium-class computation devices since the operations to
be performed are based on systems of linear equations. The
proposed solution presents outstanding behaviour in scenarios
with highly variable network conditions.

II. RELATED WORK

Different solutions of adaptive streaming have been pro-
posed during the last years. Stream-switching adaptive stream-
ing (Akamai HD Video Streaming, Adobe Dynamic Stream-
ing, Dynamic Adaptive Streaming over HTTP – DASH, etc.)
has caught on thanks to the flexibility and the respect for the
all-HTTP approach.

In stream-switching adaptive streaming, the adaptation al-
gorithm selects the best (highest bitrate) representation of
each chunk of content (also called segment), whose bitrate
is not higher than the network download rate in order to avoid
rebuffering situations. The buffer of the adaptation client is in
charge of absorbing the variations of the network bandwidth
in order to maintain stable video rate. Estimated download rate
and measured buffer occupancy are the parameters used by the
adaptation clients to assess the network conditions. In fact, the
adaptation algorithms existing nowadays can be divided in two
different groups: rate-based and buffer-based.

The majority of algorithms are based on estimated down-
load rate, r . They select the representation rate of segment
k + 1: Rk+1 as the maximum of the i possible representation
rates, so that Rk+1 is lesser or equal to the download rate
estimated after the download of the segment k (rk) : Rk+1 =
max {Ri ∈ ℜ : Ri ≤ rk }.

The differences between various rate-based algorithms come
from the methods to estimate the rate. Several authors dis-
cussed the value of historical estimated rate values [3]–[7]
to avoid oscillations, which could appea,r by using only the
estimated rate of one segment [8]. Algorithms considering his-
torical data react slower to the changes in network conditions,
which may bring out rebuffering situations.

There are several issues related to rate-based decisions.
One of them is the unfairness of bandwidth repartition when
different players compete for bandwidth, i.e., the players

0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2577360, IEEE Journal
on Selected Areas in Communications

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ??, NO. ?, APRIL 2016 2

selecting higher bitrate are able to observe higher bandwidth
[9]. However, the most important shortcoming of these algo-
rithms is the impossibility of distinguishing long and short-
time variations in the network, which leads to inappropriate
adaptation decisions. One example of this is the sensitiveness
of the algorithms to variable-size segments (due to Variable
Bit Rate coding), which provokes rebuffering situations even
in stable network conditions. Because of this, the rate-based
adaptation algorithms are not able to offer QoE guarantees.

The other class of adaptation algorithms considers the
state of the buffer after downloading segment k in order to
decide which representation should be selected for the segment
k + 1. Basically, two main parameters can be analysed for
taking adaptation decisions: the occupancy of the buffer (after
downloading segment k) and buffer changes (i.e., variation
rate of buffer occupancy). In the first case, the general idea is
to increase the representation rate if the buffer occupancy is
higher than give threshold Rk+1 = min{Ri ∈ ℜ : Ri > Rk } if
Bk > Bmax . Similarly, the algorithm decreases the representa-
tion rate when the buffer is lower than Bmin: Rk+1 = max {Ri ∈
ℜ : Ri < Rk } if Bk < Bmin. Otherwise, the representation is
the same as in segment k : Rk+1 = Rk if Bmin ≤ Bk ≤ Bmax .

In the last years, Huang et al. proposed an algorithm that
selects the representation as a function of the buffer occupancy
[10]. Such a function could be linear (first approach) or
concave (more conservative).

In [11], the authors analyse buffer (counted in time) changes
in order to include the effect of segment size variability
into adaptation decisions. They compare the playout segment
duration (Ω seconds) with the download time of segment
k (called Segment Download Time or, briefly, SDTk) and
increase/decrease the representation rate when the relation
Ω/SDTk is higher/lower than respective thresholds.

Buffer-based algorithms are not able to differentiate long-
and short-term variations of network conditions (any change
in buffer occupancy may provoke a representation switching)
and therefore, they fail in assuring stability during download
process (representation switches are observed often).

III. MODEL OF CLIENT BUFFER

This section presents the Adaptation & Buffer Management
Algorithm which aims to ensure acceptable probability of
rebuffering during the playout of the content. The ABMA pro-
poses two parallel adaptations: on the one hand, the buffer size
adapts to absorb short-term network variation (non-stationary
variation) and, on the other hand, the representation bitrate
adapts to long-term network variations (stationary variations).
The combination of both adaptation actions may keep up target
value of rebuffering probability during the transmission.

A. Functioning of Stream-switching Adaptive Client

The stream-switching adaptive download follows similar
structure as depicted in Fig. 1. First, the client logic con-
secutively requests new video chunks (HTTP 1.1 avoids RTT
delays by requesting more than one segment at once). Sec-
ondly, the TCP protocol downloads video chunks from server,
whenever TCP socket is not full. Furthermore, the client logic

Internet

DASH bu er TCP socket

DASH logic
HTTP GET [chunk]

read

size[B/seg/sec]

Client

Player app. Server

TCP
readDecoding

bu er

Fig. 1. Buffering chain at client side.

reads data from TCP socket, whenever its buffer is not full (and
TCP socket is not empty). The TCP socket length depends on
the operating system and may be time-variable (auto-tuning
option); it usually spans from KB to MB (in Ubuntu minimum,
default and maximum values of socket length are 4 KB, 87 KB
and 6 MB, respectively). Finally, the player application fetches
data, into its decoding buffer, from client buffer at variable
rate following decoding/playout rate. Each reading/fetching
operation is performed independently and asynchronously.

We distinguish two main types of buffer management logics
i.e. direct and progressive [3]. The direct logic, initially
designed for VoD applications, assumes that the buffer has an
infinite length (limited only by available memory) resulting in
video being continuously downloaded at maximum available
rate. In contrast, progressive logic (initially designed for live
TV applications) assumes that the client buffer has a limited
length and that a video is transferred gradually with download
rate following playout rate.

The type of management logic has a direct impact on
resource utilization on both network and server sides. As
clients usually tend to watch only the first short fragment
of video [12], the direct scheme highly overuses resources,
since it unnecessary downloads big portion video. Moreover,
direct download makes deeper the gap between adaptation
decision and video playout, which usually results in inefficient
utilization of the available resources. These issues, together
with other commercial reasons (advertisements), caused that
progressive scheme is the preferred choice for the multimedia
streaming in the Future Internet, for both VoD and live TV
applications.

The progressive management logic tries to keep the buffer
full requesting new segments of video as soon as possible.
As a consequence, a client can be in one of two non-volatile
states: i) in “greedy” state, when TCP socket is not full and
download rate equals to maximum available rate, or ii) in
“immovable” state, when TCP socket is full and the video is
not downloaded; in this state, the download is deferred until
finishing the playout of the current segment.

B. Model of the System

The objective of the algorithm is to control the probability
of rebuffering. Rebuffering may occur during the greedy state
in progressive management logic but it cannot occur during the
immovable state since in this state the client’s buffer is full
and play-out is not paused. Therefore, the state of the system
is modelled during the greedy download and, in this situation,
we can express the system state as the number of segments in

0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2577360, IEEE Journal
on Selected Areas in Communications

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ??, NO. ?, APRIL 2016 3

the queue and in service. The maximum number of segments
waiting in the queue is K−1 (maximum buffer length) and the
segments are served with deterministic service time (service
time equals the segment duration, i.e., Ω seconds).

A rebuffering situation occurs when a segment is completely
played out and the next segment did not arrive to the client’s
buffer. Therefore, to calculate the probability of rebuffering,
we observe the system immediately after serving each packet.
In these moments, we can calculate the steady-state proba-
bilities of finding in the queue 0, 1, 2, . . . , K − 1 segments,
called P0, P1, . . . , PK−1. Let us remark that the system does
not change in immovable state situations (full buffer) and,
therefore, the probability of rebuffering is not affected by
immovable situations.

During the service of one segment (Ω seconds), a number of
segments arrive to the system, which is modeled by a discrete
random variable A(Ω). The random variable (r.v.) A(Ω) con-
siders the characteristics of the download process including
variable segment size (due to variable bit rate video coding),
TCP behavior and variable server and network conditions. We
assume (see sub-section IV.C) that the segment arrival process
is generic independent (i.e., there is no correlation between
the segments arrived in one Ω-period and in the next one).
According to the aforementioned assumptions, the system may
be modeled by a single GI/D/1/K queue. Let us remark that
GI/D/1/K is a loss system, instead in stream-switching the
segments are not lost since the system passes to immovable
state when the queue is full. Therefore, the model is not
valid as far as loss probability is concerned. However, the
probabilities in all the states 1, . . . , K are equal in the system
and in the model.

P0 = (P0 + P1) × Pr {A(Ω) = 0},
...

Pn = P0 × Pr {A(Ω) = n}
+

n∑
a=0

Pn+1−a × Pr {A(Ω) = n}, n = 1, . . . , K − 2
K∑
j=0

P j = 1

(1)
By solving the equations (1), acquired by applying the imbed-
ded Markov chain approach, we are able to calculate the
probability of rebuffering P0. It is indeed true that QoE is
affected by both the rebuffering probability and the duration of
the rebuffering situations (these both metrics will be measured
in our tests), however low values of P0 indicates fenced
rebuffering situations and, thus, preserved QoE. Pr {A(Ω) = n}
is the probability that exactly n segments arrive to the system
during one segment playout. Pr {A(Ω) = n} is calculated
below.

C. Calculation of Pr {A(Ω) = n}
Let us consider Fig. 2. In time t, segment 0th has been

played out and the client initiates to play segment 1st . At this
moment, segment x0 is being downloaded and finishes the
download at time t + y1. In order to calculate Pr {A(Ω) = n},
we should consider how many segments arrive in time Ω− y1.

y
1

1th

x
0

x
1

x
2

y
2

2th0th

time

segment

0
-
0 1

-
1 2

arrival
t

Fig. 2. Segment arrival process in time=Ω.

Let Y be the r.v. describing the residual time of the segment
being downloaded when segment 0th finishes to be played
out (note that y1 in Fig. 2 is a realization of r.v. Y). Let
S be the r.v. describing the segment download time (i.e., in
Fig. 2, x0, x1, x2, . . . are realizations of S). We assume that
S is independent and identically distributed. This assumption
is discussed in Section IV.C. Then, we may calculate the
probability that n segments arrive to the system during one
segment playout (Ω) as the probability that the residual time
(Y) is longer than Ω (in the case when n = 0) or the probability
that the sum of residual time and n− 1 new arrivals are lower
than Ω knowing that any other segment arrival will arrive after
Ω. Note that n = 0 is the case when the whole Ω period is
occupied by the residual time y1; this case causes rebuffering if
the buffer did not contain any other segment (since the playout
finishes and no segment has arrived). The formula (2) presents
the formal definition of the explained Pr {A(Ω) = n}:

Pr {A(Ω) = n} =


Pr {Y > Ω}, n = 0∫ Ω

0 Pr {Y + S + · · · + S︸ ︷︷ ︸
n−1

= τ}

×Pr {S > Ω − τ} dτ, n = 1, . . . ,∞
(2)

which can be re-written by using the distribution functions:

Pr {A(Ω) = n} =



1 − FY (Ω), n = 0
FY+S + · · · + S︸ ︷︷ ︸

n−1

(Ω)

−FY+S + · · · + S︸ ︷︷ ︸
n

(Ω), n = 1, . . . ,∞

(3)
where FY is the cumulative distribution function of r.v. Y .
Formula (3) can be explained as follows: the probability that
exactly n segments arrive to the system during Ω equals
the probability that n or more segments arrive to the system
(during Ω) minus the probability that more than n segments
arrive to the system.

From Fig. 2, we can observe that Y is equal to y if and
only if the sum of the residual time plus the SDTs of the
segments downloaded in the current slot Ω, is equal to τ;
whereas the download time of the next segment will be equal
to Ω − τ + y. Therefore, we may calculate FY as the integral
(over all values of τ and y) of the sum of probabilities such
that 1, 2, . . . ,∞ segments are downloaded during the time slot.
This is expressed in (4).

FY (y) =
∫ y

0

∫ Ω
0

∞∑
a=1

Pr {Y + S + · · · + S︸ ︷︷ ︸
a−1

= τ}

× Pr {S = Ω − τ + t} dτ dt (4)

0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2577360, IEEE Journal
on Selected Areas in Communications

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ??, NO. ?, APRIL 2016 4

Now we will demonstrate how the probability Pr {A(Ω) = n}
can be computed for an arbitrary distribution of the segment
download time and arbitrary n. Since the solution of formulas
(2) and (3) is not immediate except for the case when SDT
distribution function has memoryless property, we proposed
a solution based on the combination of the renewal theory
(see [13], chapters VI.6 and XI) together with the Laplace
transform technique.

We will denote by G(t, x) the time-dependent distribution of
variable y1 = y1(t) (see Fig. 2), i.e., G(t, x) = Pr {y1(t) < x}.

Using the full probability formula with respect to the first
segment download time, the integral equation for G(t, x) can
be written:

G(t, x) = F (t + x) − F (t) +
∫ t

0
G(t − u, x) dF (u), (5)

where F (x) = Pr {S < x}.
By Theorem 1, p. 185 of [13], the solution of this equation

has the form:

G(t, x) =
∫ t

0

(
F (t + x − u) − F (t − u)

)
dH (u), (6)

where H (u) is the renewal function defined as H (u) =∑∞
k=0 Fk∗(u), where F0∗(u) = 1, F1∗(u) = F (u) and Fk∗(u),

k ≥ 2 is the k-fold convolution of the distribution function F
with itself, i.e.:

Fk∗(u) =
∫ u

0
Fk−1(u − v) dF (v). (7)

The steady-state distribution of y1, i.e., the distribution for
t → ∞ : G(x) = limt→∞G(t, x), can be obtained from the key
renewal theorem (see p. 363 of [13]) and equals:

G(x) =
1
m

∫ x

0

(
1 − F (u)

)
du, (8)

where m = E(S) =
∫∞

0 (1 − F (u)) du.
The steady-state (independent of the time slot considered)

probability that in the time interval of length Ω the number of
finished segment downloads is n equals:

Dn(Ω) = Pr {A(Ω) = n} = Pr {Y + S + · · · + S︸ ︷︷ ︸
n−1

< Ω}

− Pr {Y + S + · · · + S︸ ︷︷ ︸
n

< Ω} (9)

Therefore, we have

Dn(Ω) = Gn(Ω) − Gn+1(Ω), n = 0, 1, 2, . . . (10)

where G0(x) = 1, G1(x) = G(x), and

Gn(x) = Gn−1 ∗ F (x) =
∫ ∞

0
Gn−1(x − v) dF (v), n ≥ 2.

The values of Dn(Ω) can be obtained using the Laplace
transform. Namely, denoting

dn(s) =
∫ ∞

0
e−sxDn(x) dx, (11)

gn(s) =
∫ ∞

0
e−sx dGn(x), (12)

f (s) =
∫ ∞

0
e−sx dF (x), (13)

we have:

g(s) = g1(s) =
∫ ∞

0
e−sx dG(x)

=
1
m

∫ ∞
0

e−sx
(
1 − F (x)

)
dx =

1 − f (s)
ms

(14)

gn(s) = g(s) f n−1(s), n ≥ 1, (15)

and

d0(s) =
g0(s) − g1(s)

s
=

1 − g(s)
s

=
f (s) + ms − 1

ms2 , (16)

while for n ≥ 1:

dn(s) =
gn(s) − gn+1(s)

s
= g(s) f n−1(s)

1 − f (s)
s

=
f n−1(s)

(
1 − f (s)

)2

ms2 (17)

The values of Dn(Ω) can be computed effectively using one
of the available methods for the Laplace transform inversion.
For instance, using the method of [14] we obtain:

Dn(Ω) �
eC/2Ω

2lΩ

p∑
k=0

q+k∑
j=0

(
p
k

)
2−p (−1) jbj (n,Ω) , (18)

where:

b0 (n,Ω) = dn

(
C

2lΩ

)
+ 2

l∑
j=1

Re
[
dn

(
C

2lΩ
+

i jπ
lΩ

)
ei jπ/Ω

]
,

(19)

bk (n,Ω) = 2
l∑

j=1
Re

[
dn

(
C

2lΩ
+

i jπ
lΩ
+

ikπ
Ω

)
ei jπ/Ω

]
, k ≥ 1,

(20)
and p, q, C, l are parameters of the inversion method. Their
typical values proposed in [14] try to balance the accuracy and
the algorithm response time and are: p = 38, q = 11, C = 19
and l = 1. In [14], Abate, Choudhury and Whitt present a
detailed discussion on the accuracy of the inversion method.
In particular, it is suggested that if the resulting accuracy is not
good enough, then the parameters p and l should be increased.

Below we present examples of a few particular distributions
of the segment download time. Let us remark that the segment
download time is the sum of two effects: chunk size and
network variability (causing jitter) and, therefore, it is not
possible to foresee its distribution a priori. Below, we perform
measurements for analysing the distribution of the SDT in real
conditions.
Exponential distribution. For any r.v. S with memoryless
property (exponential or geometrical distribution), formulas
(2) and (3) are easily solved. Let us remark that S is not
memoryless in the reality, so it cannot have an exponential
distribution function.
Folded normal distribution. Assuming that the probability
density function of the segment download time has the form:

F ′ (x) =
1
σ
√

2π
e−

(x−µ)2

2 σ2 +
1
σ
√

2π
e−

(x+µ)2

2 σ2 , x > 0, σ > 0,

0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2577360, IEEE Journal
on Selected Areas in Communications

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ??, NO. ?, APRIL 2016 5

we have:

f (s) =
1
2

e
s2σ2

2 −sµ
[
1 + Erf

(
µ − sσ2

σ
√

2

)]
+

1
2

e
s2σ2

2 +sµ

[
1 − Erf

(
µ + sσ2

σ
√

2

)]
,

m = σ

√
2
π

e−
µ2

2 σ2 − µ Erf
(
− µ√

2σ

)
,

where:

Erf (z) =
2
√
π

∫ z

0
e−t

2
dt .

As a consequence, we obtain:

d0(s) =

1
2 e

s2σ2
2 −sµ

[
1 + Erf

(
µ−sσ2

σ
√

2

)]
m s2

+

1
2 e

s2σ2
2 +sµ

[
1 − Erf

(
µ+sσ2

σ
√

2

)]
+ ms − 1

m s2

=
1
s
+

e
s2σ2

2

[
e−s µ

(
1 + Erf

(
µ−s σ2
√

2σ

))]
2 s2

[
σ
√

2
π e−

µ2

2 σ2 − µ Erf
(
− µ√

2σ

)]

+

e
s2σ2

2

[
es µ

(
1 − Erf

(
µ+s σ2
√

2σ

))]
− 2

2 s2
[
σ
√

2
π e−

µ2

2 σ2 − µ Erf
(
− µ√

2σ

)] ,

dn(s) =
(
1
2

e
s2σ2

2 −sµ
[
1 + Erf

(
µ − sσ2

σ
√

2

)]
+

1
2

e
s2σ2

2 +sµ

[
1 − Erf

(
µ + sσ2

σ
√

2

)])n−1

×
(
1 − 1

2
e

s2σ2
2 −sµ

[
1 + Erf

(
µ − sσ2

σ
√

2

)]
− 1

2
e

s2σ2
2 +sµ

[
1 − Erf

(
µ + sσ2

σ
√

2

)])2/ (
m s2

)
=

e
s2σ2 (n−1)

2

2n−1 s2

[
e−s µ

(
1 + Erf

(
µ − s σ2
√

2σ

))
+ es µ

(
1 − Erf

(
µ + s σ2
√

2σ

))]n−1

×
[
1 − 1

2
e

s2σ2
2

(
e−s µ

(
1 + Erf

(
µ − s σ2
√

2σ

))
+ es µ

(
1 − Erf

(
µ + s σ2
√

2σ

)))]2/ (
σ

√
2
π

e−
µ2

2 σ2

− µ Erf
(
− µ√

2σ

))
, n ≥ 1.

Gamma distribution. Assuming that the probability density
function of the segment download time has the form:

F ′ (x) =
e−

x
λ xα−1λ−α

Γ(α)
, x > 0, α > 0, λ > 0,

we have:

f (s) =
(
s +

1
λ

)−α
λ−α,

m =αλ,

which gives:

d0(s) =
λ−α (s + 1/λ)−α + sαλ − 1

α λ s2 ,

dn(s) =
λ−α(n−1) (s + 1/λ)−α(n−1) (1 − λ−α (s + 1/λ)−α

)2

α λ s2 ,

n ≥ 1.

Uniform distribution. Assuming that the probability density
function of the segment download time has the form:

F ′ (x) =
1

b − a
, 0 ≤ a < x < b,

we have:

f (s) =
e−as − e−bs

s(b − a)
,

m =
b − a

2
,

which gives:

d0(s) =
(b − a) s + 2(e−as−e−bs)

(b−a)s − 2

(b − a) s2 ,

dn(s) =
2
(
1 − e−as−e−bs

(b−a)s

)2 (
e−as−e−bs

(b−a)s

)n−1

(b − a) s2 , n ≥ 1.

The proposed solution is computationally simple, which
makes feasible the implementation of the adaptation algorithm
in any device (mobile phone, tablet, etc.).

D. Definition of the Adaptation and Buffer Management Al-
gorithm (ABMA)

The objective of ABMA is to determine the highest repre-
sentation rate for the segment k + 1: Rk+1 = Ri ∈ ℜ and the
client’s buffer size: Bk+1 < M , which ensure the rebuffering
probability P0(Bk+1) to be lower than given threshold ε. The
value M [seconds] is the maximum possible buffer size limited
by the conditions of the service as, e.g., the maximum video
length stored by the application without playing out (this
depends on commercial and advertisements policies) [12]. The
value of M is fixed at the beginning of the transmission in our
model and, as explained above, it depends on the application.

The algorithm is run when a segment k has been down-
loaded and a new SDT value (SDTk) has been measured. The
initialisation phase (step 1 in Fig. 3) assumes that the represen-
tation of segment k +1: Rk+1, is equal to the representation of
the downloaded segment k, i.e., Rk+1 = Rk , as shown in Fig.
3. In this step, ABMA calculates the moments (typically mean
and variance) of the SDT distribution (from the last N probes
stored, including SDTk). The estimation based on N probes
introduce an error (estimation error), which will be discussed
in Section IV.D. However, the measurements performed in our

0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2577360, IEEE Journal
on Selected Areas in Communications

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ??, NO. ?, APRIL 2016 6

�����

����
���

����
�

�	
��
	�
��������
�

��

�	
��
	�
�

�����������
���

����
�

��
���

��є
�

����
�����

�
���

���
���

����

�������
���

�

�	
��
	�
����
�

�	
��
	�
��������
�

��

�	
��
	�
�

�����������
���

����
�

��
���

��є
�

�����
���

����

��

�����

���

��� ��

����
���

�����

����
	�����
�

�

���� �
���

�

�	
��
	�
����
�

�	
��
	�
��������
�

��

�	
��
	�
�

������������
���

����
�

��
���

��є
�

����

�
���

����!�"� �

�	�����
���

�

�	
��
	�
����
�

�	
��
	�
��������
�

��

�	
��
	�
�

�
���

����
�

��
���

��є
�

Fig. 3. Flowchart of ABMA.

implementation for several real scenarios showed that N = 50
probes introduces enough accuracy in the estimation of the
statistical moments of the SDT distribution (i.e., the difference
of the standard deviation between 50 probes and 500 probes
is negligible). The distribution function (shape) of segment
download time should be assumed a priori (this assumption is
discussed in Section IV.A).

At last, the algorithm calculates the buffer in segment k+1,
i.e., it calculates Bk+1 |P0(Bk+1) ≤ ε ∧ P0(Bk+1 − 1) > ε. The
equations (1) allow to calculate the probability of rebuffering
for given buffer size. In order to calculate the buffer size for
given probability of rebuffering, we need to apply a binary
search algorithm.

In the step 2, the algorithm checks whether the calculated
Bk+1 is larger than maximum buffer size M . In affirmative
case, we should decrease the assumed representation rate
(Rk+1) since such high representation rate would need a too
long buffer to avoid rebuffering. In the negative case, the
algorithm may try to increase the representation rate for
gaining video quality.

The decrease of Rk+1 (step 3) means that the algorithm
selects the next representation Ri ∈ ℜ with closest lower
representation rate. By changing Rk+1, the algorithm must
scale the measured values of SDT (all the N probes) so that,
if the old values of SDTj (j = 1, . . . , N) were measured with
rate Rj , then the new SDTi (i = 1, . . . , N) scaled to Rj , are
calculated as: SDTi = SDTj × Ri/Rj . Once the new values
of SDTi are calculated, then the algorithm re-calculate the
moments of new SDT distribution function and estimates the
buffer size Bk+1 |P0(Bk+1) ≤ ε ∧ P0(Bk+1 − 1) > ε.

In step 4 the buffer size is compared to M once again and,
in the case Bk+1 < M , the calculated values of Rk+1 and Bk+1
are valid and the algorithm finishes.

In the increasing adaptation loop, the operations are the
same but, at the beginning, the representation rate Rk+1 is
increased (to closest higher representation rate). The algorithm
calculates the new SDT values, the new moments of the SDT
distribution function and the buffer Bk+1. The last is compared
with the value (1− β) ×M . β is an anti-oscillation parameter
destined to avoid representation swinging in the case that

TABLE I
χ2 TEST RESULTS FOR DISCRIMINATION AGAINST DISTRIBUTION

FUNCTIONS

Exponential Folded normal Gamma Uniform

χ2
exp 59.413 28.125 37.657 78.649

χ2
0.9,d f

55.090 54.230 54.230 55.090

df 43 42 42 43

download rate varies near to two representation rates. At last,
the algorithm repeats the previous actions, if needed.

IV. DISCUSSION ON THE ASSUMPTIONS

This section provides a discussion on each one of the
assumptions of the ABMA.

A. Distribution Function of SDT

The SDT is the sum of delays of all the packets of one
segment within the network. Many papers have been published
about the effect of the network into the delay of packets
and the general conclusion is that the network in stationary
conditions causes normal-like delays [15], especially if the
number of hops transferred by the packets is numerous.

Since the SDT value is the sum of different packet delays,
the “normality” tendency should be more stressed. In order
to show this point, we downloaded 5 long contents from
the Internet (the servers were located in various European
countries) and measured the SDT values for 2-seconds seg-
ments. The SDT values were classified in 45 intervals and the
frequencies were compared with the theoretical exponential,
folded normal, gamma, and uniform distributions by using the
χ2 test.

The parameters of the theoretical functions were obtained
from the SDT samples. Since each function needs to calculate
different parameters, then the degrees of freedom (df) of the
χ2 test are different from one function to another. For example,
folded normal needs the values of average (µ) and variance
(σ), so the df are equal to 42, corresponding to the 45 samples
-1 (due to the fact that samples are frequencies and the last
frequency is not independent from the others) -2 (calculation
of two parameters from the samples).

The results of the five tests were similar regardless of the
origin of the content, which reasserts the idea that the shape of
the SDT distribution function is independent of the scenario.

Table I presents the results of one (example) test. Con-
cretely, the table shows the values of the discriminant function
(χ2

exp) between the histogram of SDT values and each one of
the four theoretical distribution functions. Moreover, Table I
shows the df of each discriminant function and the tabulate
90% point (χ2

0.9,d f).
As we may observe, the distribution function that better fits

the SDT measurements is the folded normal (the lowest value
of χ2

exp). For uniform and exponential, the null hypothesis
(“there are no differences between measured values and the-
oretical distribution”) must be rejected at the 0.9 confidence
level. In the cases of gamma and folded normal functions,
the null hypothesis cannot be rejected and we may accept

0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2577360, IEEE Journal
on Selected Areas in Communications

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ??, NO. ?, APRIL 2016 7

TABLE II
VALIDATION OF “IID” ASSUMPTION. COMPARISON RESULTS

SDT characteristics Prob. of video rebuffering [x10−7]
µ [s] σ [s] Calculation Simulation

0.25
0.10 4.64 0.87 ± 0.08
0.20 5.14 1.13 ± 0.10
0.30 6.35 1.41 ± 0.07

0.5
0.10 10.04 3.14 ± 0.28
0.20 10.87 3.94 ± 0.31
0.30 11.46 4.89 ± 0.35

0.75
0.10 12.85 8.41 ± 0.24
0.20 13.41 9.27 ± 0.16
0.30 14.27 10.51 ± 0.31

that the measurements follow these distribution functions. The
differences of the measurements and theoretical values come
from the non-stationary conditions of the network (each test
took two hours to finish).

The conclusion is that folded normal better fits real SDT
measurements histogram in the Internet. This was the distri-
bution function used in our ABMA implementation.

B. Error of Inversion (of Laplace) Method

In the analysis performed, we applied the approximation
made by Abate et al. [14] regarding the parameters used for
calculating the inverse of Laplace, i.e., parameters p, q, C,
l of equations (18) and (19). Even when the typical values
should be valid for our solution, we performed numerical
calculation of formula (5) for folded normal arrival process
and compared the results with the theoretical ones. For all
100 tests (with different values of µ and σ) there were
no differences observed between numerical calculation and
theoretical solution. Therefore, we may conclude that the
inversion method yields (almost) exact results.

C. Independent and Identically Distributed Segment Arrival
Process

The solution of the model assumes that r.v. S (segment
arrivals) is independent and identically distributed (iid). Such
an assumption is satisfactory only for arrival processes with
memoryless feature (i.e., Poissonian or geometrical). In the
case of folded normal or other processes, the number of
segments arrived during Ω is correlated to the number of
segments in the previous period (due to the residual time
y1 shown in Fig. 2), i.e., if during the previous period few
segments arrived, then y1 is probably large and the probability
that many segments arrive during the present period Ω is low.

In order to understand the range of the error introduced
by this assumption, we simulated the G/D/1/K system (folded
normal arrival process) and measured the rebuffering probabil-
ity (P0). To calculate the confidence intervals, the simulations
were repeated 10 times and each simulation counted 109

arrived segments. We compared the results with the value
calculated by our model. The time service was equal to 1
(D = 1) and the queue size was equal to 9 (K = 10).

The high differences in P0 between simulation and the
theoretical calculation (see Table II) are caused by the fact that
the calculation does not consider the effect of the residual time;
quite the opposite of the simulations, where the service process
and the arrival process are independent causing residual times
into the service process. Moreover, we may observe that the
differences are higher for lower mean values, which may be
explained by the fact that the residual time is longer when
fewer segments arrive during one service unit.

The rebuffering probability is always higher in the model
than in the reality. This means that, for given P0, the model
gives a required buffer size which is higher than it is actually
necessary. This is logical since the residual time is not neg-
ative. Therefore, we may conclude that the theoretical model
overestimates the buffer size, although the proposed buffer
sizes ensure assumed probability of rebuffering.

D. Estimation Lag of SDT Distribution

SDT distribution is estimated by means of moments of
the set of N most recent SDT probes (assessed for a given
representation). Please note that the SDT time series is, in
general, non-stationary. As a consequence ABMA may run
on outdated data, especially in case of rapid changes of
downloading conditions.

The buffered-time reservoir BR needed to counterweight
the adaptation lag is bounded by the time required to ac-
commodate N new SDT probes. This accommodation time
depends on severity and rapidity of non-stationary bandwidth
deterioration, current and target representation rates and rep-
resentation rate granularity, among others. Moreover, the time
BR is directly correlated with estimated SDT and the number
of used probes N . As a consequence, we heuristically set
buffer reservoir according to BR = γ×N×ESDT , where γ is the
nonstationarity factor and ESDT is the SDT moving average.
The BR is considered into the ABMA by reducing the effective
value of M , such as Me f f = M − BR.

The estimation latency of instantaneous downloading con-
ditions is common to almost all adaptation approaches (with
the exception of methods based on instant estimators) and,
because of this, all adaptation approaches exploit some form
of buffer reservoir to compensate for the estimation latency.

V. PERFORMANCE EVALUATION

There are several approaches to assess the performance of
adaptation algorithms. The more common approach is to anal-
yse (at the adaptive client level) specific parameters that have
direct impact on the quality of the user’s experience (at the
playout level). Assessment methods following this approach
are called no-reference methods. We apply this approach and
select a set of parameters that accurately compare the ABMA
with other two algorithms: (i) Rate-Based Algorithm (RBA)
[16], which selects the highest video representation rate that
is not greater than the most recently estimated download rate,
and (ii) Buffer Based Algorithm (BBA) [10] which selects
the representation based on linear rate map function based on
actual buffer occupancy.

0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2577360, IEEE Journal
on Selected Areas in Communications

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ??, NO. ?, APRIL 2016 8

For fair comparison of adaptation algorithms, we perform
experiments under the same conditions, i.e., same download
rate traces and same video files. We developed a fluid flow
simulation tool which enables repeating our tests in fully
controlled manner. This is possible since the system state
is defined by analytical equations that determine values of
the system variables in consecutive time instants. The HTTP
streaming system is observed just after downloading each
video segment, when the adaptation algorithm has just updated
information about downloaded segment and is prepared to
select the representation for the next video segment. In these
time instants, the system state is expressed by three variables:
time instant (tk) in seconds, buffer occupancy (Bk) in playout
seconds and representation rate (Rk) in bps.

The variable tk describes the time instant when the down-
load of k th segment has finished. It is defined by equation
(21).

tk = tk+1 + SDTk +max (Bk−1 +Ω − B; 0) (21)

where SDTk denotes the download time of k th segment,
function max(.) determines the duration of download deferring
periods occurring when the playout buffer is full, B is the
maximum buffer size (expressed in seconds) and Ω is the
segment playout time. The k-segment download time SDTk

depends on both the segment file size in bits, and the download
rate rk :

SDTk =
SegSizek (Fadapt(.))

rk
(22)

The segment size depends on the video representation
selected by the adaptation algorithm: Fadapt(.). Fadapt(.)
is algorithm-specific and each algorithm uses specific argu-
ments. For example, RBA algorithm uses average download
rate estimator, BBA algorithm uses actual buffer occupancy
and ABMA uses segment download time characteristics. At
last, rk denotes the average download rate experienced by
k th segment. The second variable Bk describes the buffer
occupancy observed just after the k th video segment has been
downloaded. Bk , expressed by equation (23), defines the total
playout time of video frames stored in the playout buffer.

Bk = max [Bk−1 − SDTk −max (Bk−1 +Ω − B; 0) ; 0] +Ω
(23)

where the first function max[.] is used for modelling the buffer
occupancy after re-buffering events, and the second function
max(.) defines the download deferring periods. Once the buffer
becomes empty, the video remains frozen until the download
of current segment will be finished.

The last variable describes the video representation selected
for the next downloaded segment, Rk+1. The representation
is selected by the adaptation specific function and depends
on algorithm-specific arguments like rk , Bk , SDT or others
(depending on the adaptation algorithm), see (24).

Rk+1 = Fadapt

(
rk, Bk,ESDT, . . .

)
(24)

Depending on the applied adaptation algorithm, different
information is used, e.g., estimated download rate, buffer
occupancy or rebuffering probability.

The fluid flow simulation follows three steps:
Step 1: Initialize the system state. In this step we set t0 = 0,

the initial buffer occupancy B0 = 0 and the representation
of the first segment, R1, is set to the representation with the
minimum rate, R1 = mini {Ri ∈ ℜ}.
Step 2: Calculate the values of system variables for consecutive
segments. Starting from the first segment, SDT1 is calculated
based on the values of segment_size and r1 following formula
(22). Next, we calculate the time instant when the first segment
is downloaded by applying equation (21) and using initial
buffer occupancy. At last, we calculate the buffer occupancy
observed after downloading the first segment by applying
equation (23) and the representation for the next segment
based on equation (24), which is different for each one of
the three algorithms.
Step 3: Calculate the values of performance metrics based on
the values of system variables derived in the step 2.

The performance metrics selected to compare the algorithms
are: the Representation Selection Efficiency (RSE), the Rep-
resentation Switch Ratio (RSR), the Representation Switch
Amplitude (RSA), the Rebuffering Event Ratio (RER) and,
at last but not least, the Rebuffering Event Average Duration
(RED). Rebuffering events and efficiency in selecting the rep-
resentation have high influence on the QoE of video reception
but also continuous rate switches decrease the engagement of
the users [17], [18]. The selection of such performance metrics
instead of MOS metrics agrees with last trend in QoE analysis
[19] and is the response to the increasing complexity of video
streaming in the Internet.

Specifically, RSE indicates the algorithm capacity of match-
ing the available bandwidth selecting the adequate represen-
tation. It is calculated as the relation between the rate of
the selected representations and the minimum of the bot-
tleneck and the highest available representation. RSR is the
rate of switches between representations. RSA is the mean
value of the switches (of representation) performed during the
download. RER is the probability of rebuffering in relation
to the number of segments. At last, RED alludes to the
length (in time) of the rebuffering situations. The formal
description of all the parameters is presented in Table III.
All of them consider k = 1, . . . , K segments downloaded
with representation rate Rk by a network with bandwidth BW
(counted in bps). Note that the download rate rk of segment
k may be, in general, lower than BW and it can be, as a
maximum, equal to BW .

In the presented experiments, we simulated a single video
client playing “Big Buck Bunny” film encoded in different
representations ranging from 45 kbps up to 15 Mbps, as
defined in the manifest file. The segment playout duration
(Ω) was 2s. The maximum playout buffer in video client
was dimensioned to 32 segments, which is typically used in
commercial clients (about 1 min of continuous video playout).
For RBA and BBA adaptation algorithms, we used the default
values of parameters that were recommended by their authors.
In particular, for RBA, we used moving average estimator
with the range of last 50 probes. In case of BBA, we used
Tmin threshold (reservoir) of 5 segments and linear function
between 5 and 30 segments as the map between rate and buffer
size. In ABMA algorithm, we assumed target video rebuffering
probability ε equal to 10−4, SDT sample size N equal to 50

0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2577360, IEEE Journal
on Selected Areas in Communications

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ??, NO. ?, APRIL 2016 9

TABLE III
FORMAL DESCRIPTION OF THE METRICS USED FOR PERFORMANCE

EVALUATION OF ADAPTATION ALGORITHMS

Parameter Formula

RSE =
1
K ×

∑K
k=1 Rk

min
{

max
j

R j ,BW

}

RSR = 1
K−1 ×

∑K
k=2

1, if Rk , Rk−1
0, if Rk = Rk−1

RSA = 1
K×RSR ×

∑K
j=2 |R j − R j−1 |

RER =
1
K × |B(t) = 0 ∧ B(t−) , 0 |,

where |function | indicates the cardinality of function

RED =
1

K×RER ×
∑K×RER

j=1 (t2 − t1) | j , where

B(t2) , 0 ∧ B(t−2) = 0 ∧ B(t1) = 0 ∧ B(t−1 , 0)

probes (the same value as used for the rate estimator in RBA),
nonstationarity factor γ equal to 0.3, and anti oscillation factor
β equal to 0.9.

A. Test #1: Constant Download Rate Conditions

In this test, we analyse how ABMA, RBA and BBA work
under constant download rate conditions. The algorithms must
compensate variations of SDT caused by variable size of
downloaded segments. In order to stress adaptation algorithms,
we use one of the highest video representation, i.e. 10.4 Mbps
and fix a little higher download rate equal to 10.6 Mbps,
which causes that adaptation algorithms work in stressed
conditions. Moreover, the high rate of video representation
assures relatively high segment file size variation.

Fig. 4 shows time plots of actual buffer occupancy vs.
buffer capacity (upper plot) as well as the rate of video
representation selected by adaptation algorithms vs. current
download rate (lower plot). The figure presents the results
for the three algorithms: ABMA, RBA and BBA. We can
observe, in Fig. 4a, that ABMA keeps the buffer far away
from empty state avoiding rebuffering events. This comes
from continuous estimation of SDT characteristics. In the case
when SDT characteristics become worse, then the ABMA
increases the playout buffer capacity to avoid rebuffering
events, so in such conditions, the maximum buffer size of
ABMA is M (32 segments), like the other algorithms. This
may be observed in many moments of the transmission, see
Fig. 4a. In the case that this action is not enough, then
ABMA selects lower representation. From Fig. 4a, we may
conclude that ABMA behaves a bit conservative since, from
time to time, it selects representation below assumed download
rate. This conservativeness comes from assumed relatively
low rebuffering threshold (10−4). On the other hand, the
RBA algorithm correctly selects representation and it keeps it
unchanged over the simulation time. However, we can observe
that buffer becomes empty several times causing rebuffering
events. This negative effect comes from the fact that rate-
based adaptation algorithm does not consider the impact of
variable segment size. The BBA algorithm (presented in Fig.
4c) avoids rebuffering events, however it suffers from frequent
and significant representation switching. Even under constant
download rate conditions, the buffer occupancy significantly

(a) ABMA

(b) RBA

(c) BBA

Fig. 4. Performance of adaptation algorithms under constant download rate
conditions.

TABLE IV
THE VALUES OF PERFORMANCE METRICS IN TEST #1

Metric
Adaptation algorithm

ABMA RBA BBA

RSE [%] 86.9 99.8 101.1

RSR [%] 6.74 0.0 18.74

RSA [Mbps] 1.4 0.0 2.34

RER [%] 0.0 3.7 0.0

RED [s] 0.0 0.8 0.0

varies due to variable size of downloaded segments, thus BBA
changes the video representation. Table 4 presents values of
performance metrics collected in Test #1.

0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2577360, IEEE Journal
on Selected Areas in Communications

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ??, NO. ?, APRIL 2016 10

We can observe that ABMA achieves the objective of
minimum rebuffering. Moreover, Table IV shows that ABMA
has slightly lower RSE than the other algorithms, but it has
relatively small representation switching ratio. The RBA does
not change representation at all, but it suffers from significant
rebuffering ratio (almost every 2 min). On the opposite, BBA
suffers from significant and frequent representation switching
(up to 18%). The representation is changed almost every 10s,
which significantly degrades the quality experienced by users.
However, the BBA is characterized by the higher efficiency.

B. Test #2: Highly Variable Download Rate Conditions
In the second test, we aim to evaluate how the algorithms

adapt video representation after sudden change of network
conditions. Therefore, we assume that download rate peri-
odically alternates between high (11.53 Mbps) and low (6.8
Mbps) bit rate every 300 s. The length of each phase was
tuned to assure semi-stationary conditions. The ratio of high
to low bit rate is about 1.7, which assures high variability.
Both selected bit rates are slightly higher (few kbps) than
representation rates available in the manifest file.

Similarly as above, Fig. 5 presents time plots of actual
buffer occupancy vs. buffer capacity (upper plot) and rate of
video representation vs. current download rate (lower plot).
We can observe that the ABMA selects video representation
following the download rate changes with slight delay. This
delay is caused by SDT estimation used in ABMA. Moreover,
we can observe that ABMA quickly responses to download
rate degradation, while it is more preventive in the case of
download rate increase. Similarly to previous test, ABMA
avoids rebuffering events but it has conservative tendency.
Also RBA follows rate changes with slight delay, which is
caused by the estimation algorithm used to assess download
rate. However, the RBA algorithm suffers from rebuffering
events. Moreover, we can observe that this algorithm reacts
slower on reduced download rate and faster on increased
download rate. This is an undesirable effect since it increases
the risk of rebuffering events. In the case of BBA, the buffer
occupancy behaves quite smoothly and follows the download
rate changes. It also avoids rebuffering events as in the case of
ABMA, but it suffers significant representation rate changes
occurring in a short time. For instance in the 550th second, the
representation rate went from 4 to 12 Mbps and then it went
back to 4 Mbps during just a few segments. Thus, we may
conclude that the variable network conditions will boost the
negative effect of representation switching as it was previously
reported in Test #1.

Table V presents the values of performance metrics col-
lected in Test #2. We may observe that rebuffering is avoided
(for ABMA and BBA) even in highly variable conditions.
Basically, the main conclusions from their analysis are similar
to those presented in Test #1. The main differences are the
following: (i) the efficiency of ABMA algorithm as well as
other algorithms is slightly lower than in Test #1. This effect
comes from the fact that we increase the variability in the
network, so all adaptation algorithms are more stressed, and
(ii) the BBA algorithm significantly increases the RSR, which
causes that representation is changed almost every 3 segments.

(a) ABMA

(b) RBA

(c) BBA

Fig. 5. Performance of adaptation algorithms under highly variable network
conditions.

TABLE V
THE VALUES OF PERFORMANCE METRICS IN TEST #2

Metric
Adaptation algorithm

ABMA RBA BBA

RSE [%] 82.3 96.2 102.6

RSR [%] 4.5 2.38 28.4

RSA [Mbps] 1.45 1.18 2.48

RER [%] 0.0 3.3 0.0

RED [s] 0.0 1.27 0.0

C. Test #3: Experiments Under Real Traffic

In this test, we aim to analyse the performance under lifelike
download rate conditions. We collected download rate traces

0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2577360, IEEE Journal
on Selected Areas in Communications

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ??, NO. ?, APRIL 2016 11

TABLE VI
THE VALUES OF PERFORMANCE METRICS IN TEST #3

Metric
Adaptation algorithm

ABMA RBA BBA

RSE [%] 75 82 98

RSR [%] 3.91 5 44

RSA [Mbps] 0.45 0.421 1.16

RER [%] 0.0 0.9 0.0

RED [s] 0.0 0.97 0.0

(every two seconds) by downloading the content by a client
connected through WiFi network (shared with other users).
Our measurements took 6 hours to get more than 105 probes.
Since the available measurements of video download rate in
the Internet are scarce, we decided to make them available
for researchers at http://wp2.tele.pw.edu.pl/disedan/software/
traces.

The above measurements were introduced in our fluid-flow
simulation environment and the algorithms run under these
download rate conditions. Note that the ideal algorithm should
select representation of each video segment in such a way that
its download time is close to the playout time.

Fig. 6 presents similar set of plots as seen in the previous
experiments. In this case, the download rate could be higher
than representation rate bringing about the overprovisioned
conditions. From these results, we conclude the following: the
ABMA algorithm (Fig. 6a) correctly follows the download
rate changes and minimizes the representation changes by
estimating the distribution of SDT. The SDT distribution
provides much more knowledge about the arrival process
than just a single value of average rate or buffer occupancy
exploited by the other algorithms. In the case of the RBA
algorithm (Fig. 6b), we observe rebuffering events and signif-
icant variation of buffer occupancy (see situation about 850th
second). The BBA algorithm (Fig. 6c) suffers, once again,
significant representation switches, which degrade the quality
experienced by the end-users.

Table VI presents the values of performance metrics col-
lected in Test #3. We observe that the efficiency of all
the algorithms is further slightly decreased. Moreover, the
representation switching in BBA is significantly increased and
the representation changes occur almost every two segments.
These effects come from the high variability of download
rate caused by WiFi network. However, the most important
conclusion is that rebuffering is avoided (in ABMA and BBA)
in real conditions scenario.

VI. INTERNET EXPERIMENTS

The experiments conducted over the Internet aim to verify
whether the proposed algorithm is capable to compensate
variability of downloading conditions and to prevent buffer
depletion during play out in real, highly variable network
environment.

We implemented our algorithm as a C++ module in order to
achieve effortless integration with different multimedia players

(a) ABMA

(b) RBA

(c) BBA

Fig. 6. Performance of adaptation algorithms under lifelike download rate
conditions.

and other applications as well as easiness in creating further
extensions.

The player application was the open-source VLC media
player, which allows DASH adaptive streaming by means of
dedicated plug-in [20]. Our adaptation module was incorpo-
rated into the DASH plug-in. The source code of our prototype
and modified VLC DASH plug-in is available on the web page:
http://wp2.tele.pw.edu.pl/disedan/software/abma.

A. ABMA Behavior in the Internet

The first experiment was provided to analyse ABMA in
case of streaming over the Internet. In particular, we wanted to
verify if the proposed algorithm: (i) is capable to compensate

0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2577360, IEEE Journal
on Selected Areas in Communications

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ??, NO. ?, APRIL 2016 12

Fig. 7. ABMA during trials over Internet.

variability of SDT, (ii) responds properly to download rate
variation, (iii) prevents buffer exhaustion during media playout
and (iv) determines optimal media representation rate.

The client (located in Poland) uses WiFi access network
and downloads a DASH video sequence from remote server
located in Austria. We used “Big Buck Bunny” cartoon [21] in
1080p resolution and the following representation rates: 2.1,
2.5, 3.1, 3.5, 3.8 and 4.2 Mbps. The video was divided into
segments with constant length equal to 2 seconds. ABMA was
configured with the same parameters as the ones described in
Section V.

In parallel with the test client streaming, a second WiFi
terminal operated in background and run a Full HD YouTube
session. In this way, the bandwidth available for the test client
was throttled to the range of the DASH video sequence. In
addition, another background session started at about 230th
second, what introduced deterioration of the available band-
width.

Fig. 7 presents the obtained time plot for buffer capacity
and buffer occupancy (the upper subplot), and download rate
jointly with chosen representation (the lower subplot). In initial
phase, ABMA quickly moved towards the highest represen-
tation, and next stayed at this level. The buffer capacity
stabilized around 25 segments, which was enough to ab-
sorb detected download rate fluctuations. After 230th second,
when the new competing background stream was launched,
the available bandwidth declined and buffer occupancy fell.
Therefore, ABMA started to consecutively decrease media
representation due to bandwidth starvation. Moreover, the
value of buffer capacity determined by ABMA increased in
order to compensate higher variability in download rate. Both
factors became stable at about 330th second. From that point,
ABMA kept media representation unchanged to the end of the
experiment, although the download rate fluctuated between 1
and 8 Mbps. Since about 350th second we can observe gradual
growth of buffer occupancy, indicating that average available
bandwidth was slightly higher than selected representation, but
not enough to increase video quality.

During the whole experiment the buffer occupancy was
always above zero, what means that the downloaded video
sequence was played out without any “freezes”.

In conclusion, the obtained results illustrate that ABMA is

TABLE VII
THE VALUES OF PERFORMANCE METRICS IN INTERNET EXPERIMENTS

Metric
Adaptation algorithm

ABMA RBA BBA

RSE [%] 73 80 91

RSR [%] 4 7 23

RSA [Mbps] 303 373 415

RER [%] 0.0 1.2 0.0

RED [s] 0.0 5.82 0.0

able to perform appropriate adaptation of video quality and
determine proper buffer size on highly variable, uncontrolled
Internet environment.

B. Comparison with Other Algorithms in the Internet

In the following experiment, we focus on comparison of
the proposed ABMA with other adaptation methods in real
network environment.

For this purpose, in our prototype we developed two ad-
ditional classes which implement rate-based and buffer-based
adaptation algorithms. Those classes were also integrated with
the VLC DASH plug-in.

The experiment setup was similar to the presented in the
previous subsection and assumes that a WiFi client downloads
media content from the same, publicly available server through
the Internet, using a multi-domain path. Moreover, two other
clients, which are connected to the same WiFi network, launch
in the background a couple of different streaming sessions
from another server to reduce amount of available bandwidth.
Both elements lead to high variability in download rate.

We repeated the test three times, for each of the investigated
algorithm. The values of configuration parameters for each
algorithm were the same as in Section V. In order to ensure
the most similar conditions and repeatability in background
streaming, the moment of starting the background sessions was
identical for all three trials: during the first 200 seconds there
were two parallel sessions in the background, then another
two were launched, which finished after about 800 seconds.
In this experiment we did not employ an uncontrolled YouTube
service for background streaming but, instead, we used a
dedicated server, which was placed in different domain than
WiFi access point (easy to control). However, for the sake of
uncontrolled Internet environment and external interferences
occurred in WiFi network, we observed that the traffic con-
ditions slightly vary between each trial. The DASH media
content used for the tests was 20 minutes video sequence
divided into 2-second long segments. The video was “Big
Buck Bunny” [21] with constant resolution 360p, which is
available with 14 quality rates. The representations span from
100 kbps up to 4500 kbps. Fig. 8 shows three sets of time
plots gathered during the trials for each adaptation algorithm.
Corresponding values of performance metrics are presented in
Table VII.

The obtained results confirm aforementioned features of
the investigated algorithms. As depicted in Fig. 8a, ABMA

0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2577360, IEEE Journal
on Selected Areas in Communications

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ??, NO. ?, APRIL 2016 13

(a) ABMA

(b) RBA

(c) BBA

Fig. 8. Performance of adaptation algorithms observed during trials over
Internet.

allows for smooth media playout, as it compensates fluctu-
ations in traffic conditions by modifying the buffer capacity
and changing quality rate, if necessary. It avoids extensive
representation switching (low value of RSR metric - see Table
VII), which is beneficial for the overall quality perceived by
the user. However, the behaviour of the proposed algorithm
is slightly conservative, and therefore its efficiency is below
other algorithms.

On the other hand, RBA, which bases solely on the rate
estimation, suffers due to rebuffering events. In turn, BBA
algorithm, similarly to ABMA, avoids buffer depletion and
achieves the best efficiency (see RSR value in Table VII),
but it distorts user’s QoE by frequent changes of media
representations (value of RSR metric is much higher in case

of BBA in comparison to the other algorithms).

VII. CONCLUSION

The paper discusses the role of adaptive applications in
improving the quality of multimedia transmission and, con-
cretely, the capability of assuring users’ QoE. We proposed a
new class of adaptation algorithms that focuses on assuring
maximum (low) rebuffering probability, which is a crucial
factor for the satisfaction of the users downloading content
through the Internet.

The Adaptation and Buffer Management Algorithm
(ABMA) manages both the maximum buffer size and the
selection of adequate representation rate for absorbing short
and long-term variations in the network and video files.

The results of the tests performed on the ABMA show
the efficiency of the algorithm in fulfilling the objective of
controlled low rebuffering probability. Moreover, the straight-
forward solution of the proposed model assures that the
ABMA may be installed in devices with medium computing
capacity.

The comparison with other classes of algorithms showed the
features of the different adaptive logics: Rate-based algorithms
focus on correct estimation of download rate but are not able to
control rebuffering. On the contrary, Buffer-based algorithms
reach also low levels of rebuffering probability, however they
react to small changes in the download process, which causes
continuous representation switches. At last, ABMA reaches
the desired objectives while improving other parameters re-
lated to QoE.

ABMA seems to be appropriate in Future Internet scenarios,
which are characterised by high variability due to the increas-
ing number of mechanisms in all the levels.

ACKNOWLEDGMENT

This work is part of the DISEDAN project within the
European CHIST-ERA Program. We want to thank the other
project partners for their support and contribution to the ideas
presented here.

REFERENCES

[1] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan, and H. Zhang,
“Practical, real-time centralized control for cdn-based live video deliv-
ery,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 311–324,
Aug. 2015.

[2] P. Wisniewski, A. Beben, J. Batalla, and P. Krawiec, “On delimiting
video rebuffering for stream-switching adaptive applications,” in Com-
munications (ICC), 2015 IEEE International Conference on, June 2015,
pp. 6867–6873.

[3] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis, “What
happens when http adaptive streaming players compete for bandwidth?”
in Proceedings of the 22Nd International Workshop on Network and
Operating System Support for Digital Audio and Video, ser. NOSSDAV
’12. New York, NY, USA: ACM, 2012, pp. 9–14.

[4] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning
approach to tcp throughput prediction,” Networking, IEEE/ACM Trans-
actions on, vol. 18, no. 4, pp. 1026–1039, Aug 2010.

[5] B. Seo, W. Cui, and R. Zimmermann, “Efficient video uploading from
mobile devices in support of http streaming,” in Proceedings of the ACM
Multimedia Systems Conference, ser. ACM MMSys 2012, 2012.

[6] K. E. Psannis and Y. Ishibashi, “Enhanced h.264/avc stream switching
over varying bandwidth networks.” IEICE Electronic Express, vol. 5,
no. 19, pp. 827–832, 2008.

0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2577360, IEEE Journal
on Selected Areas in Communications

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ??, NO. ?, APRIL 2016 14

[7] M. Grafl, C. Timmerer, H. Hellwagner, G. Xilouris, G. Gardikis,
D. Renzi, S. Battista, E. Borcoci, and D. Negru, “Scalable media coding
enabling content-aware networking,” MultiMedia, IEEE, vol. 20, no. 2,
pp. 30–41, April 2013.

[8] T. C. Thang, Q.-D. Ho, J. W. Kang, and A. Pham, “Adaptive streaming
of audiovisual content using mpeg dash,” Consumer Electronics, IEEE
Transactions on, vol. 58, no. 1, pp. 78–85, February 2012.

[9] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive,” in Pro-
ceedings of the 8th International Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’12. New York, NY,
USA: ACM, 2012, pp. 97–108.

[10] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 4,
pp. 187–198, Aug. 2014.

[11] C. Liu, I. Bouazizi, and M. Gabbouj, “Rate adaptation for adaptive http
streaming,” in Proceedings of the Second Annual ACM Conference on
Multimedia Systems, ser. MMSys ’11. New York, NY, USA: ACM,
2011, pp. 169–174.

[12] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao,
“Youtube everywhere: Impact of device and infrastructure synergies
on user experience,” in Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference, ser. IMC ’11. New
York, NY, USA: ACM, 2011, pp. 345–360.

[13] W. Feller, An introduction to probability theory and its applications.
Volume II, ser. Wiley series in probability and mathematical statistics.
New York, London, Sydney: J. Wiley, 1971.

[14] J. Abate, G. L. Choudhury, and W. Whitt, Computational Probability,
W. K. Grassmann, Ed. Boston, MA: Springer US, 2000.

[15] K. E. Psannis and Y. Ishibashi, “Impact of video coding on delay
and jitter in 3g wireless video multicast services,” EURASIP J. Wirel.
Commun. Netw., vol. 2006, no. 2, pp. 51–51, Apr. 2006.

[16] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over http,” in Pro-
ceedings of the Second Annual ACM Conference on Multimedia Systems,
ser. MMSys ’11. New York, NY, USA: ACM, 2011, pp. 157–168.

[17] O. Oyman and S. Singh, “Quality of experience for http adaptive
streaming services,” IEEE Communications Magazine, vol. 50, no. 4,
pp. 20–27, April 2012.

[18] C. Müller, S. Lederer, and C. Timmerer, “An evaluation of dynamic
adaptive streaming over http in vehicular environments,” in Proceedings
of the 4th Workshop on Mobile Video, ser. MoVid ’12. New York, NY,
USA: ACM, 2012, pp. 37–42.

[19] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang,
“Developing a predictive model of quality of experience for internet
video,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 339–
350, Aug. 2013.

[20] C. Müller and C. Timmerer, “A vlc media player plugin enabling
dynamic adaptive streaming over http,” in Proceedings of the 19th ACM
International Conference on Multimedia, ser. MM ’11. New York, NY,
USA: ACM, 2011, pp. 723–726.

[21] S. Lederer, C. Müller, and C. Timmerer, “Dynamic adaptive streaming
over http dataset,” in Proceedings of the 3rd Multimedia Systems
Conference, ser. MMSys ’12. New York, NY, USA: ACM, 2012, pp.
89–94.

Jordi Mongay Batalla He received his M.Sc. degree
from Universitat Politecnica de Valencia (2000) and
Ph.D. degree from Warsaw University of Technology
(2009), where he still works as an assistant professor.
In the past he worked at Telcordia Poland (Ericsson
R&D), and he is now with the National Institute
of Telecommunications, where, since 2010, he is
head of the Internet Architectures and Applications
Department. His research interest focuses mainly on
Quality of Service/Quality of Experience for multi-
media adaptive streaming, Future Internet architec-

tures (Content Aware Networks, Information Centric Networks, architectures
for NFV) as well as applications for Future Internet (Internet of Things, Smart
Cities, IPTV). He is author or co-author of more than 100 papers published
in books, and international and national journals and conference proceedings
and editor/TPC member of several journals and conferences.

Piotr Krawiec He received his M.Sc. (2005) and
Ph.D. (2011) degrees in telecommunications from
Warsaw University of Technology. Since 2012 he is
an Assistant Professor at the Department of Internet
Architectures and Applications, National Institute
of Telecommunications, and Institute of Telecom-
munications, Warsaw University of Technology. His
research areas include IP networks (fixed and wire-
less), Future Internet architectures and applications,
prototyping and testbeds.

Andrzej Beben He received his M.Sc. and Ph.D.
in telecommunications from Warsaw University of
Technology (WUT), Poland, in 1998 and 2001,
respectively. Since 2001 he has been Assistant Pro-
fessor at WUT, where he is a member of the
Internet Architectures and Applications research
group. His research areas cover Future Internet, IP
networks, Information Centric Networks, adaptive
video streaming, network virtualisation, traffic en-
gineering, multi-criteria decision theory, simulation
techniques, measurement methods, and testbeds.

Piotr Wisniewski He is a Ph.D. candidate at the
Institute of Telecommunications at the Warsaw Uni-
versity of Technology, where he received his M.Sc.
(2010) and B.SC. (2009) degrees in Telecommunica-
tions. He works as a specialist at the National Insti-
tute of Telecommunications in Warsaw (Poland). His
research interests include: adaptive media streaming,
Quality of Service, Information Centric Networks,
network virtualization and Software Defined Net-
works.

Andrzej Chydzinski He received his M.Sc. degree
(with honours) in mathematics in 1997, and his
Ph.D. and D.Sc. degrees in informatics in 2002
and 2008, respectively. In 2015 he received the
Professor title from President of the Republic of
Poland. Currently he is a professor at the Institute of
Informatics and the head of Division of Computer
Networks and Systems. His scientific interests are in
computer networking, particularly in mathematical
modelling and performance evaluation of computer
networks, Future Internet design, queueing models,

discrete event network simulators and active queue management in Internet
routers. He has participated is several research projects, in four of them as
the project leader. He authored and coauthored four books and about ninety
journal and conference papers. His works are widely cited (about 800 times
according to Google Scholar). He serves as a reviewer for several high-
quality journals, such as Telecommunication Systems, Performance Evalu-
ation, Queueing Systems, Mathematical Problems in Engineering, Applied
Mathematical Modelling, Annals of Operations Research.

