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Abstract—The paper proposes a novel flexible packet 

forwarding (FPF) method designed for Future Internet networks. 

It follows the source routing principle at an inter-domain level 

and applies the list of domain customized identifiers to forward 

packets on the end-to-end path. The main features are capability 

to introduce flexible routing path selection, native support for 

multipath and multicast packet transfer, ability for exploitation 

of advanced in-network packet processing as, e.g., content 

recoding and caching. The performance and scalability of FPF 

approach were evaluated by experimentation on developed 

prototype as well as by scalability studies assuming Internet-scale 

network scenario.  

Future Internet, source routing, packet forwarding, SDN 

I. INTRODUCTION  

The severe limitations of the Internet architecture motivate 

research towards Future Internet (FI), also called New 

Generation Network (NWGN) or Internet 3.0 [1, 2]. The main 

constraints stem from the ossification of TCP/IP architecture 

that prevents innovations at the network level. This ossification 

comes from: (1) the global scope and location dependency of 

the IP addresses, (2) destination sink tree routing (3) lack of 

multi-path transfer, (4) hardly scalable multicast in large-scale, 

multi-domain networks, and (5) closed routers (“walled 

gardens” created by vendors) that render the implementation of 

new packet processing impossible. Current research 

approaches to obviate these limitations focus on Software 

Define Networking (SDN) [3] that enables implementation of 

novel management and control mechanisms by providing clear 

separation of control and data planes. 

In this paper we propose and evaluate a Flexible Packet 

Forwarding (FPF) method that follows the source routing 

principle (which offers high flexibility in routing path 

selection) and is open for innovative in-network packet 

processing functions required by FI applications in the data 

plane. Its features go beyond the State of the Art on forwarding 

mechanisms, as shown in Section II. Besides the specification 

of FPF method (Section III), the main achievements of the 

presented research are the development of both software and 

hardware prototypes (Section IV) and the performed 

experiments proving that FPF performance is slightly better 

than IP router (Section V). Moreover, in Section VI we present 

scalability analysis showing that FPF is suitable for Internet-

scale networks. We believe that FPF is a step forward towards 

the extension of the SDN concept by instilling new capabilities 

in the data plane while improving SDN scalability thanks to the 

reduction of state information in SDN forwarders [4]. 

II. ANALYSIS OF RELATED WORKS  

One of the main FI challenges is to design effective routing 

and forwarding methods that overcame limitations of the IP 

protocol. The key objectives are providing more flexible 

routing path selection and enabling innovative in-network 

packet processing, while assuring scalability of the solution. 

Many of recently proposed approaches are based on the source 

routing principle, which is not really a new idea. The original 

studies on exploiting source routing in IP networks are 

presented in [5]. Authors proposed to extend packet header 

with route sequence, which includes addresses of intermediate 

nodes on the path towards destination. This solution introduced 

several advances, e.g., enlarged flexibility and support for 

multicast, but it was not widely accepted due to significant 

overhead of packet header and security threats coming from 

possible attacks by replacing the addresses of intermediate 

nodes in the packet header. Similar constraints have MPLS 

stacking approach [6]. In order to overcome these limitations, 

the pathlet routing proposal [7] uses node identifiers (vnode) 

instead of IP addresses of intermediate nodes. The end-to-end 

routing path is created as a concatenation of path segments, 

called pathlets. A pathlet may be defined locally inside one 

Autonomous System (AS) or may span several ASs. In the 

latter case, node identifiers must be globally unique, so the 

node identifier is extended to the pair (AS number, vnode). 

From the development point of view, the pathlet routing 

requires deployment of new forwarding entities.  

The original approach for source routing multicast was 

proposed by LIPSIN [8]. It exploits Bloom Filters (BF) for 

creating multicast tree identifiers, which are used by 

intermediate nodes to forward packet copies to selected output 

ports. The BF uses hash functions that significantly reduce 

overhead but suffer from false positive outcomes.  

The segment routing [9] is a new approach for source 

routing that has been recently proposed by IETF SPRING WG. 

It assumes that nodes forward packets on the basis of a list of 

segments included in the packet header. Each segment is a 

32-bit-long identifier that can be used either for packet 

forwarding or packet processing (e.g., multicast). The segment 

routing is flexible and open to innovations, but constant 

segment size leads to scalability constrain and security threats.  

This work was undertaken under the Pollux II IDSECOM project 
supported by the National Research Fund Luxembourg (FNR) and the 

National Centre for Research and Development (NCBiR) in Poland. 
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The proposed FPF method has been designed and 

developed in parallel with pathlet and segment routing 

proposals, resulting in some similarities with them. 

Nevertheless, the FPF main advantages over pathlet and 

segment routing correspond to: (i) local (defined in node) 

scope of LIDs, which significantly reduces LID size, (ii) 

variable size of LID, which makes feasible adaptation to 

domain size and (iii) openness for innovative in-network 

packet processing. As we show later in Section VI, the first two 

features are of the great importance on FPF scalability.  

III. FLEXIBLE PACKET FORWARDING METHOD 

The proposed Flexible Packet Forwarding method assumes 

that packets are forwarded based on the domain-specific, Local 

IDentifiers (LIDs) included in the packet header. The vector of 

identifiers determines the unidirectional end-to-end routing 

path through a sequence of domains towards destination. Each 

LID is defined in local scope, so its structure and semantics is 

understandable only by Forwarding Entities (FE) located 

within a given domain. The FPF method enables FEs to 

maintain only the neighborhood information, i.e., how to 

forward packet to the peering FEs. This feature significantly 

reduces the LID size and consequently the size of forwarding 

tables. Due to the open nature of LIDs each domain may 

define, aside from basic packet forwarding function, other 

specific packet processing functions as, e.g., enforcing QoS 

handling, sending packet copies to multicast tree, storing 

content in the cache. The FPF header, defining the routing 

path, is attached and removed by the edge FEs located close to 

the source and the destination. The ingress edge FE assigns 

packets to routing paths using packet filters. They are defined 

by the network control plane in an explicit or implicit manner, 

as explained below in Section III B.  

The FPF method assumes that the network control plane is 

in charge of calculating the end-to-end routing paths by 

concatenation of LIDs defined by consecutive domain on the 

routing path. It can use of any multipath routing protocols, e.g. 

as proposed by pathlet routing [7], Routing Awareness Entity 

[10], or it can be set even manually imposing the end-to-end 

routing inside of one network domain. Therefore, the 

establishment and selection of end-to-end routing paths are not 

within the scope of this paper and we only assume that such 

paths do exist.  

Fig. 1 presents the concept of FPF. Let us consider an 

exemplary packet flow, delivered from domain C to domain A 

using routing path C-B-A, which differs from IP routing going 

through domain D. When FPF is being used, the edge FE 

located in domain C intercepts packets matching the packet 

 

Fig. 1.  The concept of FPF method 

filter and encapsulates them with the FPF header. This header 

includes the vector of LIDs, [LIDB, LIDA], which determines 

successive FEs on the path towards destination. Each FE uses 

its LID from the FPF header. In our example, the LIDB defines 

how to forward packet from the edge FE located in domain C 

towards the first FE located in domain B. Then, the first FE in 

domain B forwards the packet to the second FE in domain B 

(see Fig.1) on the basis of the information provided by LIDA. 

LIDA is also used by the second FE to forward the packet to 

domain A (destination edge FE). Note, that LIDA is used by 

both FEs located inside domain B and both FEs know where 

and how the packet must be forwarded. Finally, the destination 

edge FE in domain A removes the FPF header and sends 

packets directly to the destination device.  

FPF has been designed to coexist with different network 

technologies; i.e., it may exploit different underlying packet 

transfer technologies between peering FEs and it even allows 

for delivering any type of data units between the source and 

destination domains. In this case, a correct protocol specific 

filter should be defined at the ingress edge FE, which enables 

packet classification and en/de-capsulation of FPF header.  

Another important feature is flexibility in the inter-domain 

routing selection thanks to the fact that inter-domain routing is 

based uniquely on the information included in the packet 

header (LID vector). For example, the network control plane 

could decide special routing for any flow set, ranging from 

micro flow (or even one single packet), through any level of 

aggregated flows, up to all flows going towards the same 

destination (destination sink tree). FPF approach natively 

supports multipath packet transfer allowing a given flow to be 

delivered on multiple routing paths. Moreover, the FPF makes 

the dynamic changes of routing rules feasible just by updating 

the vector of LIDs inserted by the edge FE.  

 

Fig. 2.  The FPF packet header 

The FPF header, depicted in Fig. 2, covers the following 

fields: (1) Length (1 byte) indicates the number of bytes 

required for storing the LID vector in the header; (2) Index 

(1 byte) indicates the offset to the first byte of the LID used in 

the current domain. The Index value is increased by the border 

FE when the packet leaves its domain. The ingress edge FE 

sets Index equal to 0 after classification and it increases Index 

in the case when the ingress edge FE is also the last FE in this 

domain; and (3) LID Vector includes the sequence of LIDs 

corresponding to the inter-domain routing path. We assume 

that LIDs used inside a domain should be of constant size in 

order to simplify matching process in FE forwarding table; but 

different domains may use LIDs of different sizes. Anyway, 

the LID size should be minimized in order to reduce the 

overhead (this will be discussed in Section VI).  

Note that FPF header slightly increases the original packet 

size. Therefore, the underlying transmission systems may need 

segmentation/reassembly function for transferring FPF packets. 
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A. FPF forwarding process 

The forwarding process is performed by each FE when it 

receives a packet with FPF header. Each FE keeps forwarding 

table (Input interface, LID) → (forwarding rule), as presented 

in Table I. This table shows exemplary forwarding rules 

corresponding to the packet transfer on Ethernet and multicast 

tree. All LIDs inside a given domain have constant size, so, the 

FE uses constant length matching LID in the forwarding table. 

The LID identifies the forwarding rule that describes “how to 

forward packet to the next FE”. Note that this information has a 

long-term validity and it is updated by the control plane 

according to routing changes. 

TABLE I.  EXEMPLARY FORWARDING TABLE IN FE 

Input 

interface 
LID Forwarding rule 

#1 {0xa1} Send packets to queue Premium on the 

interface #9 using Ethernet frame with 

destination address a1:01:02:ff:01:d9 

#3 {0xf1} Create packet copies for the following 

multicast leafs:  

1) update LID vector to 0xa1e3d3 and 

handle packet by forwarding engine 

2) update LID vector to 0xaabce8 and 

handle packet by forwarding engine 

 

Upon receiving a packet with FPF header, the FE performs 

the following steps: (1) it registers the input interface if_in 

where the packet arrived; (2) it performs sanity check of Index 

filed: if Index value is greater than Length, then FE drops the 

packet; if Index is equal to Length, then FE removes the FPF 

header and sends the packet directly to the destination. Note 

that this is the case of last FE in the path; (3) it performs 

lookup in the forwarding table using the if_in and the LID 

pointed by Index to find the appropriate forwarding rule, (4) if 

the packet goes to the next domain, the FE increases the value 

of Index to point out at the next LID and (5) it processes the 

frame accordingly with forwarding rule and sends the packet to 

the output interface. 

B. Packet encapsulation in edge FE 

Packet encapsulation with FPF header is performed by the 

ingress edge FE based on the packet encapsulation (rules) 

table, which includes: (1) the multi-field packet filter to 

identify packet flow, (2) the LID vector used for packet 

forwarding, (3) timeout to remove expired filters and, 

optionally, (4) other flow specific information as, e.g., session 

identifier, traffic profile, etc. This optional information is used 

for traffic policing, shaping, multicasting, etc. For TCP/IP 

traffic, multi-field packet filtering is performed on the basis of 

5-tuple including: Src. and Dest. addresses IPv4 or IPv6; 

Protocol number (IPv4) or next header (IPv6); and Src. and 

Dest. port numbers (optional). In case of non-IP protocols, 

packet filters specific for such protocols should be provided. 

The edge FE intercepts incoming packets and performs lookup 

in the encapsulation table. If a packet matches one of the 

packet filters, the FE encapsulates the packet following the 

encapsulation rule, resets the timeout and passes the packet to 

the FPF forwarding process. If a packet does not match any 

filter, then it is forwarded by using standard forwarding (e.g., 

IP) or it is dropped. The rules in encapsulation table are 

managed by higher layer (network management and control) 

and may be set in two ways: explicit and implicit. 

1) Explicit approach 

In this approach, packet encapsulation rules are configured 

per flow in advance before the beginning of flow transmission. 

The packet filter configuration is done explicitly by the 

network management and control system, e.g., SDN controller, 

and it is based on the characteristics of the expected flows. For 

each new flow request, the controller selects the transfer path 

(from the set of available established off-line paths) and 

configures appropriate packet filter in the edge FE. The explicit 

approach is suitable for the system with distinct flow set-up 

phase such as Next Generation Networks (NGN) or some 

Information Centric Networks (ICN) [11].  

2) Implicit approach  

In this approach, the packet encapsulation rules are 

configured dynamically on the basis of Deep Packet 

Inspection (DPI) [12]. When the first packet of the new flow 

arrives to the edge FE and there is no matching rule in the 

encapsulation table, then a copy of the packet is passed to the 

so-called Flow Aware Classifier (FAC). The FAC performs 

DPI on the copy of the packet, while the original packet is 

forwarded by standard routing rules. Some protocols may 

require more than one packet in order to univocally classify 

the flow; for example, video flow using RTP protocol can be 

identified by checking the increment of sequence number in 

the RTP header between two successive packets. Therefore, a 

packet counter controlling the packets passed to DPI may be 

required for some protocols. Following the higher layers 

information assessed during the DPI (e.g., the flow is VoIP 

stream) and the management instructions for such a kind of 

flows, a new packet encapsulation rule is configured in the 

encapsulation.  

The DPI algorithms may inspect protocol/service/content 

related fields that are retrieved by information above L4. This 

approach facilitates flexibility in the creation of the filters and 

has been proposed in order to cope with the emergence of 

multimedia services, terminal mobility as well as the evolution 

of End User model from single direction service consumer to 

content creator and distributor (i.e., prosumer) [13].  

IV. FPF PROTOTYPES 

We developed the FE prototypes to prove theirs feasibility 

and evaluate performance of FPF method. They were 

implemented on software and hardware platforms, i.e., Linux 

based server and specialized network processor board - EZchip 

NP-3 EZappliance (EZappliance for short) [14].  

Prototypes utilize the commonly used protocols: Ethernet 

802.3 at link layer, IPv4/IPv6 at network layer, and TCP/UDP 

for transport. We implemented FPF at the 2.5 layer, so that IP 

packets are encapsulated with the FPF header and inserted into 

Ethernet frames. We use experimental value of ether type 

(0xcccc) of Ethernet header to distinguish FPF packets. 

Moreover, FPF coexists with IPv4/IPv6 forwarding. 
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Fig. 3 depicts the functional block diagram of FE prototype. 

FE is composed of forwarding and encapsulation engines, 

FAC, and forwarding and encapsulation configuration agents. 

The forwarding engine executes LID-based forwarding 

following the rules handled by the forwarding agent. The 

encapsulation engine intercepts packets received from an 

access network, classifies them based on 5-tuple packet filter 

and encapsulates them with the FPF header according to the 

encapsulation table. The FAC keeps track of running flows and 

manages entries in the encapsulation table (via encapsulation 

agent). In particular, FAC sniffs incoming IP traffic, detects 

new flows, and finally classifies them (using DPI). Sniffing is 

performed to decide if a packet belongs to a new flow enabling 

DPI to be executed only for a few packets per new flow. 

 
Fig. 3.  FE prototype diagram 

Edge FE has all modules, while core FE is simplified and 

uses only forwarding engine and configuration agent.  

The FPF packets traversing through FE are processed 

exclusively by the forwarding engine, arrows {1},{2} in Fig. 3. 

The FPF packets exiting the core network are decapsulated by 

forwarding engine {1}, and forwarded by IP logic {6},{7}. The 

IP packets received by core FE are processed according to the 

standard IP stack {9},{8}.  

All IP packets coming to edge FE are intercepted and 

classified {3}. If a packet matches a rule in encapsulation table, 

it is encapsulated and then switched by the forwarding engine 

{4},{2}. Otherwise, it is passed to IP stack {5},{7}/{8}.  

A. Linux based prototype  

The basic FE prototype was developed for Linux platform. 

The source code is available at 

tnt.tele.pw.edu.pl/software_fpf.php. The encapsulation and 

forwarding modules are implemented as loadable Linux kernel 

modules to assure high efficiency. The configuration agents 

are developed as user space programs in Python and 

communicate with kernel modules through netlink inter-

process communication provided by libnl library. 

The forwarding engine is implemented in the Linux kernel 

as a new protocol handler (called FPF protocol handler), 

which is called-back when a FPF packet distinguished by 

0xcccc ether type value arrives to the kernel. Then the 

forwarding engine: performs sanity check, and i) decapsulates 

the IP packet and injects it back to the bottom of protocol 

stack with netif_receive_skb function (if index field is equal to 

length field), or ii) performs LID-based forwarding and 

transfers the packet to the chosen network device driver (with 

dev_queue_xmit function) or drops the packet if LID value is 

not found in the forwarding table. For implementation 

simplicity, we have assumed that each LID is one byte long. 

The FE Linux prototype supports the following link layer 

technologies: Ethernet, VLAN Ethernet and GRE tunnels. 

The kernel encapsulation module is based on netfilter 

framework. It exploits two “hooks” for each IP version. The 

first hook is used to intercept incoming IP packets at 

pre-routing stage, whereas the second hook is used to intercept 

packets coming from local processes (we assume that FPF 

node can generate FPF packets). If a packet matches any 

encapsulation rule, then it is encapsulated with the appropriate 

FPF header and injected back to the bottom of protocol stack. 

The FAC exploits LibPCAP library to capture packets and 

parse IP and transport headers. A hash-map based Flow class 

is introduced to keep track of running flows. Notice that the 

packet processing path through kernel is not affected. All the 

information required by FAC is copied, allowing packets to be 

forwarded unaltered, using the default forwarding paths, until 

the classification of the flow is done.  

The classification is based on the heuristic and the finite 

state machines matching algorithms. They are capable of 

classifying flows based on the L7 protocol information like 

RTP header extensions or SEI messages (Supplemental 

Enhancement Information) contained in the payload for 

MPEG-4/SVC headers.  

B. EZappliance based prototype  

The core FE was also developed on EZappliance hardware 

platform. EZappliance contains NP-3 network processor [14] 

that provides flexible data packet processing, and build-in 

Linux based host CPU system that performs control plane 

functionalities [15]. The NP-3 processor itself is composed of a 

pipeline of heterogeneous Task-Optimized Processors (TOPs) 

tailored for different stages of packet processing (TOPparse, 

TOPsearchI, TOPresolve, TOPsearchII, TOPmodify) [15]. 

The core FE was implemented in dedicated NP-3 

processor assembly language. For incoming Ethernet frames, 

the TOPparse code analyses ether type field, parses FPF 

header, performs sanity check and constructs search key for 

FPF forwarding table. TOPsearchI processor looks up LID 

values in forwarding table and, next, the TOPresolve makes 

forwarding decision and picks optional modifications. Finally, 

TOPmodify processor performs modifications (increase of 

index filed or decapsulation). Our implementation of FE 

supports Ethernet and VLAN Ethernet. 

V. PERFORMANCE EVALUATION 

This section focuses on evaluation of developed FPF 

prototype. We evaluate performance of three basic FPF 

modules, i.e., (1) FPF forwarding engine (throughput), (2) 

encapsulation engine (throughput for increasing number of 

running flows), and (3) FAC (throughput for increasing 

number of new flows). Moreover, we qualify the FE 

performance by comparing it with IPv6 software router. 
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A. The FPF forwarding engine  

The FPF forwarding engine is used in both core and edge 

FEs, so its performance is crucial for the deployment of FPF 

method. Following the RFC 2544, the throughput metric is 

defined as the maximum rate of packet stream forwarded 

without any packet losses, expressed in frames per second 

(fps). We measure IPv6 throughput on the same machine as a 

point of reference. 

The testbed consists of Device Under Test (DUT) and 

Automatic Test Equipment (ATE) interconnected by two 

1 Gbps links in ring topology. The ATE generates the 

measurement stream (FPF or IPv6) and sends it to DUT by the 

first link. Then the stream is forwarded by preconfigured DUT 

and sent back to ATE by the second link. As ATE, we used 

Spirent TestCenter SPT-2000 chassis with hardware traffic 

generator/analyser card CM-1G-D4. The prototype of FPF 

forwarder (DUT) runs on either standard off-the-shelf Dell 

PowerEdge R620 server (Linux deployment of FE) or 

EZappliance. The server is equipped with Intel Xeon Processor 

E5-2630L@2 GHz, 12GB RAM and Broadcom NetXtreme 

BCM5719 network card and runs stack openSUSE 12.3.  

To measure the throughput, we applied binary search 

method with resolution of 1Mbps. We performed 

measurements for at least the following frame sizes: 78B, 96B, 

128B, 196B, 256B, 384B, 512B, 1024B and 1518B (includes 

Ethernet checksum). As recommended in RFC2544, each test 

iteration lasted 60 seconds (at least 4.8*10
6
 frames forwarded 

by DUT). We repeated each test several times to delimit the 

confidence intervals. As the 95% confidence intervals in all 

tests (with the exception of FAC performance tests, see Section 

V.C) are lower than 2% we do not present them for clarity. 

In the first test scenario we evaluated performance of Linux 

based prototype. Fig. 4 presents FPF and IPv6 throughputs 

measured for different frame sizes and plotted against maximal 

theoretical throughput of 1Gbps Ethernet link. We observe that 

FPF throughput is noticeably higher than IPv6 throughput for 

frames sizes smaller than 256B and, above that size, both 

throughputs are equal to maximal theoretical value. 

 
Fig. 4.  Forwarding throughput of FE vs. IP router for software prototype 

We conducted throughput evaluations in two other 

hardware devices and different Linux distributions. We 

observe that FPF and IPv6 throughputs are on a comparable 

level when network interface is a bottleneck, whereas FPF 

throughput is higher (up to twice) when the bottleneck is due to 

CPU limitations. This corresponds to the simpler packet 

processing in the FE in comparison to the IP stack. The FPF 

forwarding is less complex thanks to small and constant size 

LIDs. Such LIDs significantly simplify lookup process in 

forwarding table due to limited table size and simpler packet 

matching (constant size vs. the longest prefix matching). 

In the second test scenario we evaluated performance of the 

network processor based prototype. As EZappliance is capable 

of forwarding several gigabits of traffic per second (around 

ten-odd) and the interfaces are limited to 1 Gbps, we 

interconnected a few interfaces creating local loops. Next, we 

prefetched FPF forwarding table with one LID per interface 

enabling the same FPF stream to be concurrently forwarded by 

DUT a number of times. As a result, thanks to the flexibility of 

FPF method, we have measured FPF throughput, which was 

not possible in case of IP routing. 

Fig. 5 presents the FE throughput plotted against theoretical 

value. We calculated the theoretical value assuming the typical 

bandwidth of SPI4.2 interface (connecting NP-3 with Ethernet 

aggregator [14]), which is equal to 12.8 Gbps. We observe that 

the measured throughput differs slightly from the theoretical 

value only for small frame sizes (under 128B). We conclude 

that FPF engine is able to forward frames with the maximum 

theoretical throughput of EZappliance proving the feasibility of 

FPF method applied to a specialized network hardware. 

 
Fig. 5.  Forwarding throughput of FE for network processor based prototype 

B. The encapsulation module  

The performance of the edge FE is determined by the 

number of concurrently classified flows (by encapsulation 

module) and their total input rate. We analyzed the ability of 

edge FE to intercept and handle large number of running flows 

up to 16 thousands (16K). Let us remark that the performance 

of core FE is independent from the number of running flows as 

it depends only on the number of paths which is intrinsically 

small (as shown in section VI).  

The measurement method and scenario are the same as 

described in previous subsection, but in this case, the number 

of streams generated by the ATE ranges from 1K to 16K. Each 

stream, distinguished by unique IPv6 source address, has equal 

rate. We set the upper bound of number of streams to 16K 

since this is the upper limit of G711 VoIP (64 kbps) streams on 

1 Gbps link. In order to measure the worst case scenario we 

configured DUT (Linux prototype) to intercept, encapsulate 

packets from all incoming streams.  

The throughputs measured for different number of ingress 

streams are plotted in Fig. 6 against theoretical link throughput. 

We can observe that the throughput slightly decreases when the 

number of flows increases, which is caused by the growth of 

classification complexity of packets (look-up time in 

encapsulation table). Nevertheless this difference is small since 

0 100 200 300 400 500 600 700 800 900 1000 1100
  0

0.2

0.4

0.6

0.8

  1

1.2

1.4

Frame size [B]

T
h
ro

u
g
h
p
u
t 
[f
p
s
]

 

 

FPF

IPv6

Theory

x106

0 100 200 300 400 500 600 700 800 900 1000 1100
0

5

10

15

20

25

Frame size [B]

T
h
ro

u
g
h
p
u
t 
[f
p
s
]

 

 

FPF

Theory

x106

Globecom 2014 - Next Generation Networking Symposium

1990



 

 

the encapsulation and forwarding time is constant. Moreover, 

the throughput degradation relates only to relatively small 

frames (smaller than 384B), proving feasibility of edge FE. 

 
Fig. 6.  Encapsulation throughput of Linux prototype 

C. Flow Awareness Classifier 

In order to evaluate the performance of FAC, we need to 

assess the correlation between the capability of capturing 

packet data and the arrival rate of new flows. In this context 

DUT (Linux-based edge FE) is tested under traffic load with 

variable flow arrival rate and two frame sizes: 128 and 1528B. 

In order to exclude problems caused by the network interface 

or the limitation of its hardware, the traffic is generated off-line 

by software generator, and captured in LibPCAP compatible 

trace files. Concretely, we created four trace files with 10, 100, 

1K and 10K flows and the same number of packets in all the 

files. These files are read by the FAC module using the highest 

reading rate (allowed by the hardware and upper bounded by 

the hard disk transfer rate). The tests compare the time T1 that 

FAC uses to read the file and to process the flows (sniffing all 

the packets and performing DPI for the first packet of each 

flow) and the time T0 of reading the file without performing 

any other extra operation.  

 
Fig. 7.  FAC performance (percentile of T0/T1) vs. number of flows 

Since the test results may depend on the CPU occupation 

and system clock, we repeated the tests several times in order 

to extract the confidence intervals. These intervals resulted in 

the range up to 18% of the mean values. As we may observe in 

Fig. 7, the processing of small packets is more demanding than 

the processing of large ones, which can be imputed to the 

sniffing operations performed by LibPCAP library. Moreover, 

the sniffing capacity is irrespective of the number of flows until 

a certain limit, which is sensible since the sniffing operations 

do not change for increasing number of flows (note that the 

table with the currently running flows has constant length equal 

to 20,000 flows in all the tests).  

From the graph, it can be deduced that FAC is able to 

capture and process DPI over 1K simultaneous flows, but when 

the number of flows reaches 10K, t hen the edge FE needs 

twice more time for inspecting the flows. As a conclusion, we 

may affirm that the DPI mechanism limits the number of 

simultaneous flows that the edge FE can handle. Let us remark 

that the implemented code of DPI has not been optimized. 

VI. SCALABILITY EVALUATION  

In this section, we assess scalability of FPF method. The 

main questions about FPF scalability are related to the 

overhead introduced by FPF header as well as the performance 

of packet processing performed in FEs.  

The FPF method follows the source routing principle, 

where each packet includes LID vector determining the inter-

domain routing path towards destination. The FPF overhead 

depends on the number of LIDs in the header and the sizes of 

individual LIDs. The number of LIDs is correlated with the 

length of inter-domain path because, in principle, each domain 

“uses” one LID from the header. Therefore, the size of LID 

vector can be estimated from the length of inter-domain paths.  

In order to calculate the length of inter-domain routing 

paths in the Internet, we use the CAIDA dataset [16], which 

contains data describing the Internet topology. We have 

analyzed the relations between the domains provided by RIPE 

[17] and introduced shortest path algorithm for obtaining the 

pdf of AS path length (over 1.3*10
9 

inter-domain paths 

connecting 36,878 domains), which are shown in Fig. 8. 

  

Fig. 8.  The pdf of AS path length, where (a) linear scale, (b) logarithmic scale 

From these plots, we can observe that the majority (99%) of 

paths cross less than 7 domains. The average length is 4.88 and 

the longest path crosses 20 domains. Briefly, the number of 

LIDs into the LID vector for the 99% of domains is 7 and the 

longest LID vector contains 20 LIDs. 

In addition to the number of LIDs (into the LID vector), we 

must consider the length of individual LIDs. Basically, LIDs 

are defined in each domain to univocally identify the intra and 

inter-domain routes with associated per domain packet transfer 

behavior between two consecutive domain ingress points (see 

Fig. 1). In addition, an operator may define a number of 

specific LIDs to trigger special packet processing functions, 

e.g., multicasting.  

The LID size depends on the number of: (1) routing paths 

towards neighboring domains, which is directly related to 

domain degree (DD), (2) per domain packet transfer behaviors 

offered on the paths (DB), and (3) special packet processing 

rules supported by the domain (SR). The upper bound of LID 

size (LS
+
) expressed in bytes can be calculated by (1):  
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     ⌈                ⌉, (1) 

where ⌈ ⌉ denotes the minimum integer not lower than x.  

We use the upper bound LS+ to estimate the number of 

bytes required in FPF header. For that purpose, we analyze 

degree of all domains available in CAIDA dataset. By way of 

example, we assume that each domain distinguishes three 

domain packet transfer behaviors for each intra-domain routing 

path and defines one special LID for each inter-domain link. 

The obtained results are presented in Table II.  

TABLE II.  PERCENTILE OF DOMAINS’ DEGREE HISTOGRAM AND LID SIZE 

Percentile 

[%] 

Number of 

domains 

Domain degree 

(max.) 

Number of 

LIDs (max.) 

LS+ 

[byte] 

(max.) 

90% 33190 6 24 1 

99% 36509 60 240 1 

99.50% 36693 128 512 2 

99.99% 36874 2000 8000 2 

100% 36878 2972 11888 2 

We can observe that 99% of domains need only 1 byte-long 

LID to identify all the paths, due to their small DD. Only 

backbone domains (tier 1) and large tier 2 domains may require 

2 bytes for the LIDs.  

Based on the above analyses and taking into consideration 

Length and Index fields we may conclude that, for majority of 

end-to-end paths, the FPF header is shorter than 10 bytes. In 

the worst case, i.e., for the longest routing path which would 

hypothetically cross only large transit domains, the FPF header 

does not exceed 42 bytes, which is as in IPv6. Since IPv6 

scales properly in the Internet, we can affirm that also FPF is 

scalable to the Internet (as far as overhead is concerned).  

The second scalability issue focuses on the complexity of 

FPF operations. For scalability reasons, we have designed the 

core FE to be as simple as possible and left any complex packet 

processing at the edge FE (in line with DiffServ approach).  

As we have demonstrated in Section V, the core FE has 

slightly better forwarding performance than IPv6 router. On the 

other hand, the edge FE forwarding is more complex than edge 

IP router because it performs packet interception and 

encapsulation. Moreover, the edge FE handle information 

about all running flows in encapsulation table. Anyway, the 

performance tests confirmed that our simple (software-based) 

implementation of edge FE running on ordinary hardware can 

handle up to thousand active flows. If edge FE must handle 

more traffic, then more edge FEs could be easily deployed.  

Based on the above discussion, we conclude that FPF 

forwarding approach is similar (as far as scalability concerns) 

to DiffServ approach, which is regarded as scalable. So, we 

may forecast not many scalability issues in FPF method.  

VII. SUMMARY  

This paper proposes novel Flexible Packet Forwarding 

method, where nodes forward packets based on a vector of 

Local Identifiers (LID) included in the packet header. Our 

method allows for flexible routing path selection, enables 

seamless multi-path and multicast routing at the inter-domain 

level, which offers new opportunities for traffic engineering at 

the inter-domain level. Moreover, the FPF method is open for 

implementation of innovative in-network packet processing. In 

the paper, we present developed FPF prototypes implemented 

on Linux based server and EZchip NP-3 network processor. 

We have made accessible the Linux based implementation to 

the research community. The code is open-source and can be 

further developed for specific purposes.  

The performed experiments confirmed that FPF node 

achieves slightly higher throughput than corresponding IPv6 

router due to less complex packet processing. The scalability 

studies showed that FPF method will fittingly scale in the 

Internet thanks to the limited size of LID vector because of 

limited length of the inter-domain paths and small degree of 

domains in the Internet. An important FPF feature is that FPF 

nodes use only local information, i.e. how to forward packets 

to the next domain. Any per flow information as packet filters 

are kept in the edge FE (configured by management and 

control plane).  
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