
Implementation and performance testing of ID layer

nodes for hierarchized IoT network

Jordi MONGAY BATALLA1, Mariusz GAJEWSKI2, Waldemar LATOSZEK2, and

Piotr KRAWIEC2

1Warsaw University of Technology, Nowowiejska St. 15/19, 00-665 Warsaw, Poland

jordim@interfree.it

2National Institute of Telecommunications, Szachowa St. 1, 04-894 Warsaw, Poland

[m.gajewski;w.latoszek;p.krawiec]@itl.waw.pl

Abstract. Recent advances in technologies for smart devices are having a

significant impact in IoT (Internet of Things) scenarios as, e.g., intelligent

buildings. Sensor/actuator networks use small and non-intrusive devices

consuming reasonable amount of energy and offering improved performance.

On the other hand, highly specialized devices providing high reliability are

interconnected by dedicated network infrastructure because of safety reasons.

This article discusses early stage of the implementation of an innovative

hierarchical network infrastructure for connecting IoT objects and services

where the location of the nodes is closely related to the structure of the

environment as it occurs in intelligent buildings/enterprises.

1 Introduction

Networks consisting of specialized sensors and actuators play a crucial role in cur-

rently under development intelligent buildings. There are two observable areas where

the networked IoT objects are successfully used: energy saving and security. Both

require sensors (i.e., passive infra-red, fume detectors, etc.) and actuators (i.e. light

switches, window actuators, etc.) located in selected areas of a building. Their loca-

tion is strictly dependent on the structure of the building and connections between

them, which creates a hierarchical network that can be modeled as a tree topology, as

shown in Fig. 1.

This article discusses implementation details together with test results of the de-

ployed hierarchical network for connecting IoT objects where node location may be

defined by the same environment structure, as it occurs in the case of intelligent build-

ings with fix nodes and fix sensors/actuators. The presented implementation is based

on the ID Layer concept that we developed and presented in [1]. The discussed net-

work node has been mostly developed in Linux kernel module and extends the solu-

tion proposed in Flexible Packet Forwarding (FPF) method [2].

Fig. 1. Example of hierarchical network for data transmission in intelligent building

2 Context

Until recently, sensor networks were mainly the hermetic solutions based on spe-

cialized devices, dedicated network and proprietary protocols developed by suppliers.

Over time, popular solutions have become factory standards widely used in the indus-

try control [3] (e.g. Controller Area Network), but also in other areas [4]. For exam-

ple, more and more smart devices have been equipped with standard wired or wireless

Ethernet interfaces [5], thus they may share the same network infrastructure as other

applications. Therefore, it is desirable to implement such nodes using layer-2 network

that is backwards compatible with Ethernet.

In order to develop the location-oriented network topology, the key idea is to em-

bed the physical network connectivity structure into a (logical) topological space (e.g.

introducing a metric or Euclidean space). This approach was presented among others

in VIRO (Virtual Id ROuting) [6] to illustrate how the novel topological perspective

enables the development of the scalable resilient network routing algorithms. Another

example of this approach is SEATTLE [7], which introduces OSPF-style shortest

routing in layer 2 for inter-connecting objects and Ethernet switches. Such solutions

are aimed at reducing network-wide flooding – often typical for Ethernet switches

needed to forward packets whose locations are yet to be learned, especially in the case

of wide layer-2 networks, which encompass small LAN networks.

Other approaches aimed at replacing the current global IP address space by flat

identifiers, have been adopted by VRR [8], UIP [9] and ROFL [10]. They make use of

several methods of hashed id assignment (mostly based on DHT), which produces an

id-space completely independent of the underlying network topology. As a result,

these methods perform routing based on logical distance to the id of the destination.

Real Time Control Systems consider not only topological addressing, but also

transmission parameters such as packet delay and predictability of the response time.

In such systems, the transmission is moderated by a controller/supervisor, which

grants permissions to specific devices (i.e. sensors/actuators) by sending appropriate

tokens. The order of polling is fixed according to the address table (with flat structure)

stored in the controller and can have nothing to do with the physical placement of

devices. The device with the next highest address is the logical neighbor, even when

they can be located at the extreme ends of a physical network. Example solutions

encompass, among others, Profibus [11] and DeviceNet [12].

In turn, the ID Layer concept [1] assumes hierarchical addressing scheme for the

same purpose, i.e. each level of address hierarchy is represented by one address seg-

ment. Forwarding process is based on analysis of particular address segments, howev-

er, this approach does not require physical node on each level of hierarchy since for-

warding functionality may be performed also by virtualized nodes.

3 Implementation of ID Layer node

The main objective of the implementation of the ID_Layer node is to develop the

ID layer in the network level instead of building an overlay network. The architecture

proposed in [1] has a hierarchical structure, in which each node has a human-readable

identifier related to its location. These nodes, called further as ID_Layer nodes, in-

clude connected objects (sensors/actuators) and also address the services offered by

the objects. It is assumed that the name of each node, object and service is formed as

an 8-ASCII extended character (word). The naming scheme uses hierarchical ID-

based addressing scheme, which is created and managed in conjunction with the loca-

tion of the IoT object. The human-readable names of nodes, object and services are

also used for packet routing across the network.

All included functional blocks of ID-Layer node were created as software modules

in user and kernel space of Linux operating system. Fig. 2 shows main building

blocks of ID_Layer node and functional dependencies between them. The main mod-

ules are: (1) Forwarding Administration Tool, which is the configuration module.

This module gives the possibility for an administrator to configure the Forwarding

Table and to assign a node name; (2) Forwarding Module, which is responsible for

sending a frame to the required node, regardless of whether the frame is a data frame,

a registration message or a resolution message. More detailed definition of different

types of frames is given in [1]. This module communicates with Registration Module

(registration process), Resolution Module (resolution process) and the Forwarding

Administration Tool during the initial node configuration procedure; (3) Registration

Module, which is responsible for the registration of new objects/services in the node,

to which the object/service are connected, while the (4) Resolution Module allows to

obtain the information about all the objects/services registered in the specified node.

The implemented ID-Layer node performs functionalities of forwarding, registra-

tion of objects/services and resolution of services.

For forwarding frames, the ID address is included in the header of the ID frame to-

gether with the information about header length. Moreover, each node has assigned

its own address by the administrator [1]. This allows to perform forwarding actions in

the node only by comparing the ID with the address of the node without the necessity

of running routing protocols.

Registration is the process by which objects (and basic/composed services offered

by them) inform about the own characteristics to the closest network node. The net-

work nodes will maintain information about the connected objects and offered ser-

vices.

At last, resolution is in charge of discovering the services offered by the objects

and presenting them to the users (IoT applications).

Fig. 2. General architecture of the ID_Layer node

Details of the functional processes performed by the modules are given in the next

sub-sections, starting from the configuration of the ID-Layer node.

3.1 Configuration of ID_Layer node

The Forwarding Administration Tool located at the user space communicates with

the Forwarding Module (kernel space) for basic node configuration in the following

areas: Forwarding Table configuration and node name configuration.

The Forwarding Table configuration is performed by adding new entries in an ap-

propriate data structure maintained by the ID_Layer node in the kernel space. The

following sample command is performed to configure one entry:

./cf_tool add_ethernet room001 eth4 aa:11:b0:c0:00:01

where:

room001 – name of the next node

eth4 – name of the interface through which the frame will be sent

aa:11:b0:c0:00:01 – destination MAC address

In order to perform a complete configuration of the node, it is necessary to assign a

node name. It is performed by issuing the following command:

./cf_tool add_name floor111.build111.room111

3.2 Forwarding process

The data forwarding process is performed by the Forwarding Module using the

Forwarding Table, which is a data structure that stores necessary information about

routes to the adjacent nodes. The forwarding process applies only to data frames and

resolution messages, in which the destination address means the domain name of the

node, while the registration messages, for which the fixed destination address

(.locathst) is established, are forwarded without querying the Forwarding Table.

Data and resolution frames contain similar formats, as far as addressing concerns

(ID frame header is presented in Fig. 3). The format of the ID frame header contains

destination and source addresses as well as Message info (more information about

data format can be found in [1]). Both, the source and the destination addresses, con-

tain different levels (corresponding to different hierarchical levels) separated by dots

(e.g., build001. floor001.room0001). Each level contains 8 bytes. In the 2-byte mes-

sage info field, the first four bits define the message type, the next bit identifies

whether the message is multicast or unicast. Finally, 11 bits indicate the length of the

message in bytes.

Fig. 3. Exemplary ID_Layer frame

When a frame arrives to the node, this compares the destination address with the

entries of the Forwarding Table and forwards the frame, following the rule inserted

into the Forwarding Table. The forwarding operation is preceded by a validation of

the destination address. The aim of this step is to check whether the appropriate part

of the destination address contained in the frame is consistent with the node name

assigned by the administrator. For example, a frame with address floor001.room0001

should not arrive from the parent node interface (interface where the parent node is

connected) to a node with address .floor002, but it may arrive from the child node

interface (this case would be the case when the frame should be directed to the desti-

nation through the parent node). Each level of the destination address is compared

with the corresponding level of the own node name set previously by the administra-

tor. In the case of a failed name validation, the frame is forwarded to the node at a

higher level of hierarchy (parent node). In the case of positive validation, the frame is

forwarded according to the forwarding rule set in the Forwarding Table. From the

implementation’s point of view , there are two options for performing such a valida-

tion. The first option consists of converting the destination address of the frame as

well as the address of the node to integer type and comparing the integers. In the sec-

ond option, both the destination address and the own node name are stored and com-

pared as character variables. It is supposed that the first option is quicker since the

number of comparisons is proportional to the number of levels, whereas the second

option requires a number of comparisons proportional to the number of characters

(which is equal to 8 times the number of levels). In the test experiments presented in

the next section, we will compare the performance of the two options.

If the validation process finishes positively, then the forwarding process goes

ahead by searching the relevant part of the domain name that will be used during the

forwarding procedure. The information about the own node name allows the algo-

rithm to find the relevant part of the name. If the node name is floor001.build001 and

the destination address set in the frame header is floor001.build001.room0001, then

the forwarding will be based on the last part of the address (room0001).

The next step of the algorithm is to find an appropriate entry in the Forwarding Ta-

ble for the relevant part of the domain name.

The Forwarding Table consists of entries with 3 fields: destination_MAC,

dev_name and next_node, as shown in Table 1.

Table 1. Data structure of Forwarding Table entries

Name of variable Type of variable Description

destination_MAC uint8_t [48] Destination MAC address of the node

interface to which the frame is sent

dev_name char [5] Name of the outgoing interface

next_node char [8] Domain address of the next node

The information about the next_node (destination node address) is used to calculate

a specific index of the entry in the Forwarding Table. In order to add the appropriate

entry to the table, the algorithm converts the 8-byte long next_node name to 1-byte

numerical value according to the following iteration algorithm (1):

 index = ((37 * index) + ch→name[i]&0xff) (1)

where index is the value of the converted next_node (1 byte), i is an iteration variable

and ch→name[i] is the i-level of the domain node name.

Then, the find_entry function queries the Forwarding Table about the interface

connected to the value index. On the basis of the information contained in this entry,

the frame is sent to the next node.

Fig. 4 shows the sequence diagram of the forwarding process.

Fig. 4. Sequence diagram of the forwarding process

3.3 The registration process

The registration process illustrated in the sequence diagram presented in Fig. 5 is

initiated upon the receipt of a specific register message [1] by the Forwarding Mod-

ule. Then, the Forwarding Module reads the appropriate message info field [1] placed

in the message header and redirects the process to the Registration Module without

querying the Forwarding Table. In the Registration Module, the function regis-

ter_handle is called. This function maintains main data structure with information

about currently registered objects or services (object/service identifier –id and full

address of the object/service - ObjectAddress). If the data structure does not yet store

the entry with the demanded id of the object/service, then a new entry is created with

the data contained in the register message. Finally, the Registration Module passes to

the Forwarding Module the necessary information used for sending response message

to the object/service (that sent the register message) in order to confirm the registra-

tion process.

Fig. 5. Sequence diagram of the registration process

3.4 Resolution process

The resolution process illustrated in the sequence diagram of Fig. 6 is initiated by

the user (IoT application) in order to retrieve information about registered

objects/services.

Fig. 6. Sequence diagram of the resolution process

For this purpose, the user’s application sends a resolution message, which is

forwarded in accordance with the forwarding algorithm until the destination node.

When the message reaches the destination node, the Forwarding Module of this node

extracts the message info and, based on this information, redirects the process to the

Resolution Module where the function resolution_handle is executed. In the next step,

the Resolution Module retrieves information about registered objects/services of the

queried node from the Register Module (get_object function) and retrieves

information about all child nodes from the Forwarding Table (get_child function),

which enables the identification of the objects/services registered in the nodes of

lower hierarchy. In the final phase of the resolution_handle function, the Resolution

Module sends the appropriate information to the Forwarding Module. The latter

builds a resolution response message, in which the source and the destination

addresses are interchanged. Moreover, information about registered objects/services

and names of the child nodes are placed into the information field of the resolution

response message. Finally, these messages are sequentially forwarded back to the

requester.

4 Performance tests of forwarding process

Even if the advantages of ID addressing and ID Layer forwarding are numerous for

IoT applications [1], the proposed solution risks fail in the case when the implementa-

tion does not fulfill the requirements of performance necessary for forwarding a large

amount of packets. The aim of the presented here performance tests is to show that

the deployed solution is efficient enough to be used in IoT scenarios. More precisely,

we will demonstrate that the ID-Layer node performance is comparable to IP router

implemented on Linux OS (software development). Moreover, the test deal with

scalability issues show the behavior of the ID_Layer node for increasing up to 8 num-

ber of the domain levels, i.e., for increasing hierarchy atomization.

The testbed /consists of one System Under Test (SUT) and one tester. The SUT is

the ID_Layer node installed on HP ProLiant DL360G6 server, which runs Linux Op-

erating System. The tester is the Spirent TestCenter (equipped with CM-1G-D4 card).

The tester and the SUT are connected by two 1 Gbps Ethernet links in ring topology,

as proposed in the benchmarking for testing network interconnect devices presented

in RFC 2544 [13]. We performed tests for the following frame size: 96B, 112B,

128B, 160B, 256B, 384B, 512B, 1024B and 1518B, and the stream was the maximum

allowed by the interfaces, i.e., 1 Gbps. In these conditions, we measured the frame

losses observed in the SUT due to overload of the server.

The results presented below shows the Frame Loss Ratio for different frame sizes

and increasing number of domains. First of all, let us remark that the software IP rout-

er implemented on Linux OS was installed in the same hardware and the Frame Loss

Ratio of the IP router was, at least, 20 times higher than the ID_Layer node (for all

frame sizes), even in scenarios with 8 domain levels. Note that the IP router perfor-

mance is not affected by level complexity because of the same nature of IP addresses.

For clarity purposes, we did not present the values of Frame Loss Ratio in the figure.

As one of the major features of the forwarding process is the validation of the des-

tination address in the ID_Layer frame, we compared two approaches for implemen-

tation, which is described above. As stated above, this address is composed of the

levels of the domain name separated by dots. The introduction of this functionality

results in the need for additional computational effort caused by parsing the destina-

tion address.

Fig. 7. Test results for frames 96B, 112B, 128B frames (both options of forwarder implementa-

tion):

a) name validation with conversion of variables. b) name validation without conversion of

variables (0 number of domain levels means forwarding without validation name)

The results revealed that the increasing number of levels of the domain name in

the destination address causes a higher Frame Loss Ratio for both options of the

ID_Layer forwarder (i.e., name validation with and without conversion of variables).

The increase of Frame Loss Ratio is approximately linear for each test scenario. In

addition to this, it can be noted that, for the same tests (frames with the same number

of domain levels), there is no significant difference between the values of Frame Loss

Ratio for both implementations of the forwarder. .

In Fig. 7, we presented results only for frames not bigger than 128B, but the tests

were performed for other frame sizes according to the test assumptions. The results of

the other tests confirmed that the forwarder transmits frames with bit rate equal to the

maximum link bitrate - 1Gb/s for frames larger than 160 Bytes independently of the

test scenario (number of domain levels). For the frame size equal to 160B, the Frame

Loss Ratio parameter does not exceed the level of 10-6. This means that the main limi-

tation of the forwarder performance is the performance of network interface as frame

loss occurs only for very small frames.

It can be concluded that the size of the address contained in the frame header has a

small impact on the value of the Frame Loss Ratio parameter and, on the other hand,

the performance of the ID_Layer node is satisfactory (at the same level as software IP

router).

5 Conclusions

More and more smart devices used in current developments are equipped with

Ethernet interfaces, which allow sharing the same network infrastructure between

different applications. This approach allows to reduce implementation costs and does

not adversely affect the functionality of the intelligent building solutions.

The based on the ID layer concept implementation was developed over the Linux

operating system. It engages mainly kernel resources to improve effectiveness of the

solution.

We conducted performance tests of the prototype aimed at checking the effective-

ness of the implemented solution for different lengths of the address field. In result,

we calculated the limit performance of the node, which could be located on different

levels in hierarchy tree. The test results presented above confirm the usefulness of

kernel based approach for ID layer implementation. In particular, it is able to serve

high frame rates and can be implemented as additional functionality of Linux based

network nodes.

Further works will cover, besides the completion of routing functionality according

to assumptions in [1], development of system for centralized domain names manage-

ment.

References

1. J. Mongay Batalla and P. Krawiec, Conception of ID layer performance at the network

level for Internet of Things, Springer Personal and Ubiguitous Computing, 2013

2. A. Bęben, J. Mongay Batalla, P. Wiśniewski and G. Xilouris, “A Scalable and Flexible

Packet Forwarding Method for Future Internet Networks”, IEEE Globecom 2014. The

source code for Flexible Packet Forwarding (FPF) method may be found in:

http://tnt.tele.pw.edu.pl/software_fpf.php

3. Website of CAN in Automation (CiA), available on http://www.can-cia.de/

4. Świątek, P., Klukowski, P., Brzostowski, K., Drapała, J.: Application of wearable smart

system to support physical activity. In: Advances in Knowledge-based and Intelligent In-

formation and Engineering Systems,pp. 1418–1427. IOS Press (2012)

5. Hunt J., Building automation migrates towards Ethernet and wireless, Industrial Wireless

Book, Issue 69 (April 2012), available on

http://www.iebmedia.com/wireless.php?id=8593&parentid=74&themeid=255&hft=69&sh

owdetail=true&bb=1

6. Sourabh J, Yingying C, Zhi-Li Z (2009) VEIL: A “Plug-&-Play” virtual (ethernet) Id layer

for below IP networking. 1st IEEE workshop on below IP Networking 2009 (In conjunc-

tion with IEEE Globecom 2009)

7. C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: a scalable ethernet architec-

ture for large enterprises. SIGCOMM, 2008

8. M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron. Virtual ring rout-

ing: network routing inspired by DHTS. SIGCOMM Computer Communication Rev.,

2006

9. M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica. Rofl: routing on flat

labels. In SIGCOMM, 2006.

10. B. Ford. Unmanaged internet protocol: taming the edge network management crisis.

SIGCOMM Computer Communication Rev., 2004.

11. Website of PROFIBUS and PROFINET International (PI), available on

http://www.profibus.com

12. Website of global standards development and trade association for Common Industrial

Protocol or “CIP” – and the network adaptations of CIP – EtherNet/IP, DeviceNet, Com-

poNet and ControlNet. Website available on http://www.odva.org/

13. Bradner and McQuaid, “Benchmarking Methodology for Network Interconnect Devices”.

Requests For Comments RFC 2544. 1999.

http://tnt.tele.pw.edu.pl/software_fpf.php
http://www.can-cia.de/
http://www.profibus.com/
http://www.odva.org/

