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Abstract. The paper describes a new admission control (AC) algorithm for 
greedy TCP connections. The algorithm has passed positive tests in pre-
production QoS IP network [2], developed inside European IST project 
AQUILA1 network.  The algorithm operates per single TCP flow and it 
assumes the setting of advertised receiver TCP window size for maintaining 
ideal TCP behaviour (no packet losses). The QoS objective is to guarantee the 
requested bit rate, say Rreq, a user demands from the network. Furthermore, on 
the basis of the Rreq and information about round trip time (RTT), the user 
request is mapped into the form of single token bucket parameters, i.e. token 
accumulating rate (R) and bucket size (BS), constituting input parameters for 
AC decision. For admitted TCP connection the Rreq is guaranteed, even if 
running connections differ in Rreq and RTTmin. Included simulation results 
confirm the efficiency of the algorithm. 

1 Introduction 

A packet flow associated with single TCP connection is commonly named as elastic 
one. This is due to the TCP behaviour, which allows for adjusting the TCP sending 
data rate depending on traffic conditions in network. Therefore, on the contrary to the 
flows produced by streaming applications usually requiring hard end-to-end QoS 
guarantees e.g. [8], the elastic flows were traditionally handled in best effort way. 
However, most of the currently available applications in Internet use, as a transport 
protocol, TCP or TCP-like. The examples are: FTP, Telnet, e-commerce, WWW, 
RealPlayer etc. Now, the challenge is to provide some QoS guarantees also for TCP 
flows with special focus on minimum throughput [2,3]. Satisfying this objective is of 
special interest in future QoS IP network. The key issue for providing QoS is the 
admission control (AC). 

The most promising solution for QoS IP network is the DiffServ architecture [4, 5]. 
One of the proposals for such a network, developed inside the AQUILA IST 
European project [2], is an enhancement of generic Diffserv architecture by adding 
new functionalities for admission control and resource management as well as by 
defining new set of network services.  

                                                        
1 European IST project „  AQUILA – Adaptive Resource Control for QoS in IP-based Layered 

Architecture” (2000-2003)  



  

The AQUILA architecture is depicted on Fig. 1. It assumes that the AC agent 
(ACA) is located at each Edge Routers (ER) for assuring that traffic submitted to the 
core does not exceed given AC limit, being a part of total link capacity between the 
ER and CR (Core Router). The value of AC limit is allocated by the Resource Control 
Agent (RCA), situated on the top of the network [2]. The call handling scenario is the 
following. A user, for requesting a connection, uses the end-user application toolkit 
(EAToolkit) for sending his request to the ACA with traffic contract parameters. The 
ACA admits/rejects this call, depending on current load on ER-CR link and assigned 
AC limit.  
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Fig. 1. General AQUILA network architecture 

For now, four different types of packet flows have been recognized as typical in 
Internet and requiring QoS guarantees. There are the following: (1) streaming 
constant bit rate (e.g. VoIP), (2) streaming variable bit rate (e.g. video applications), 
(3) elastic, produced by greedy TCP or TCP-like sources (e.g. FTP), and (4) elastic, 
non-greedy TCP sources (e.g. home banking). In this spirit, four QoS network 
services (NS) have been defined and implemented in AQUILA. Each NS is optimised 
for specific type of packet flows and has its own traffic handling mechanisms, 
including admission control.  

In this paper we focus on the AC algorithm for the NS aimed at handling greedy 
TCP flows with throughput guarantees as the QoS objective, packet flows of type (3). 
The excellent candidate for using this NS is a FTP user. The proposed AC algorithm 
operates per TCP flow and assumes the setting of advertised receiver TCP window 
size, allowing us to maintain the ideal TCP behaviour (no packet losses). It assumes 
that a user, before establishing TCP connection, submits its request to the network. 
The traffic contract specifies the target requested bit rate, say Rreq. Furthermore, on 
the basis of the Rreq and information about round trip time (RTT) of the TCP 
connection, the user declarations are mapped into the form of single token bucket 
parameters, say token accumulating rate (R) and bucket size (BS), constituting input 
parameters for AC decision.  



 

   
The investigated by many authors AC scheme for TCP connection, e.g. in [3, 13], 

assumes to reject new TCP connections simply by dropping SYN and ACK SYN 
segments in the case of the network congestion. For instance, the congestion can be 
identified when number of waiting packets in the queue exceeds predefined threshold. 
However, this approach could guarantee a fair share of link capacity between running 
TCP connections but without possibility for providing them rate differentiation. 
Another interesting results, which can be adopted, but not in straightforward way, for 
the purpose of AC, were reported in [9] and corresponding to the possibility for 
getting QoS differentiation of TCP flows by using token bucket marking mechanism. 
The list of proposed AC algorithms for elastic traffic and based on some declarations 
is presented in [14], but none of them is explicitly targeted for guaranteeing the 
requested rate for TCP.  

The rest of the paper is organized as follows. Sections 2 discusses the TCP flow 
control mechanisms and consequences of using token bucket mechanism for the 
purpose of TCP traffic description and policing, the factors taken into account in the 
proposed AC, described in Section 3. Section 4 shows numerical results illustrating 
effectiveness of the considered AC. Finally, the Section 5 concludes the paper.  

2 Factors Influencing AC 

Before describing the proposed AC algorithm for TCP greedy flows, we shortly recall 
the TCP mechanisms for traffic control and consequences of using token bucket 
mechanism for policing of TCP traffic. We argue that these two factors are crucial 
from the AC viewpoint. 

There have been several implementations of TCP protocol. The most important 
modifications were the introduction of congestion and avoidance techniques. This 
version is usually referred to as Tahoe TCP. Tahoe TCP regulates the number of 
packets and it sends by inflating and deflating a window according to the network 
requirements. In order to do this, the TCP sender uses the cumulative 
acknowledgments sent by the receiver. If no packets are lost, TCP keeps inflating the 
window in the three main phases: slow start, congestion avoidance and maximum 
window [1,10,11,12], Reno, New-Reno and Sack were designed to improve the 
performance of Tahoe TCP when packets are lost. However, when no packet loses 
occur they behave like Tahoe TCP. Thus, in the ideal case of no packet loses all these 
different implementation should have the same performance.   

From the proposed AC algorithm viewpoint, the critical issue is to control the 
changes (if any) of transmission window size. In the TCP case, it is rather difficult to 
predict TCP behaviour when the packet losses are not under control. Therefore, for 
the purpose of AC it is reasonable to consider ideal case, as discussed in [6]. The 
modelling issues of TCP behaviour in best effort Internet network, which are taking 
into account impact of packet losses on received throughput were discussed by many 
authors, e.g. [7,9]. Additionally, in [9] the authors pointed out that using token bucket 
marking mechanism is not sufficient for getting ideal TCP service differentiation. 
Anyway, these studies assumed the overload network conditions, which are not 
adequate when AC algorithm is employed.   



  

2.1 Studied System for  AC  

The system for the AC is depicted on Fig.2. It consists of C capacity link with 
associated buffer size B, and corresponds to the bottleneck link between ED and CR 
routers in the AQUILA network (see Fig.1). A number of running TCP connections 
share the system. In general case, these TCP connections may differ in the requested 
bit rate Rreq and RTT.  

A user, before establishing TCP connection, submits its request to the network. 
The traffic contract specifies the target requested bit rate Rreq. Furthermore, on the 
basis of the Rreq and information about round trip time (RTT) of the TCP connection, 
the user request is mapped into the form of single token bucket parameters, say rate 
(R) and bucket size (BS), constituting input parameters for AC decision. This traffic is 
policed at the network entry point. 
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Fig. 2. System with n running TCP connections: TCP#n –n-th TCP source; TB#n – Token 
Bucket mechanism dedicated for flow#n 

2.2 Consequences of Applying Token Bucket Mechanism 

Ideal AC should guarantee that TCP source would get throughput/goodput close to 
Rreq value. Let us remind that token bucket mechanism operates on deterministic 
parameters while TCP sends packets in a non-regular way accordingly to current 
sending/transmission window and RTT. As a consequence, one can observe that the 
traffic produced by a single TCP source has a tendency to follow rather statistical 
behaviour than deterministic one. Therefore, we argue that this what could be policed 
by the token bucket should be closely related to the value of TCP sending window 
size, like maximum guaranteed/requested value of TCP sending window size Wreq. 
Let us remind, that token bucket polices the worst case traffic, which could occurs 
sporadically that one can observe in the TCP traffic. The value of Wreq should be 
specified for traffic contract (in direct or non-direct way). Starting from this point, we 
deduce for token bucket parameters the following relations: 

reqinin WRLBSL =− )/(*    (1) 

, where Lin denotes the input link capacity (in bps).  



 

   
The expression (1) shows the way for dimensioning BS on the basis of assumed 

Wreq. The Wreq denotes the maximum packet burst (ON period), counted in bits, which 
could be emitted by the TCP source. Therefore, the time duration of ON period, TON, 
in this case is: 

inreqON LWT /=       (2) 

OFFON TTRBS +≥/          (3) 

, where TOFF is the time duration between packet bursts (OFF period). From (3) we 
can obtain additional constrains referring to the minimum value of RTT for TCP 
connection. The condition for RTTmin results from (2) and (3), and is the following:  

RBSTTRTT OFFON /min ≤+=     (4) 

The condition (4) for RTTmin results from the fact that the token bucket size should 
be fulfilled to the maximum value (=BS) before starting new ON period. Notice that 
less rigorous traffic pattern is generated when current RTT is greater than RTTmin. 

Summarizing, from the point of view of the token bucket mechanism the worst 
case traffic, which a TCP-controlled stream could produce is obviously of ON/OFF 
type, as depicted on Fig.3. 
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Fig. 3. The worst case traffic produced by a TCP-controlled stream from the point of view of 
the token bucket mechanism 

In fact, the token bucket mechanism has ability for distinguishing between in- and 
out-of-profile packets. The in-profile packets are in accordance with the traffic 
declarations while the out-of-profile packets excess the policed profile. Therefore, 
there is reasonable to consider out-of-profile traffic as an additional, non-controlled 
traffic, which is not taken into account by AC. So, the only traffic for which we can 
give some guarantees corresponds to the in-profile traffic. As a consequence, in 
further part of this contribution we focus only on AC for in-profile traffic. 

The requirement for the AC is to give guarantees that the declared (requested) 
volume of throughput by a user Rreq will be provided. Taking into account that we use 
token bucket mechanism for traffic contract policing, with above mentioned 
limitations, we argue that additional information about RTTmin is needed. The 
knowledge of the RTTmin allows us for proper tuning of token bucket parameters (see 
eq. 4). Anyway, the guaranteed Rreq will never exceed the assumed token 
accumulating rate R and this results in straightforward way from the token bucket 
concept. The relations between Rreq and R will be discussed in the further part of the 



  

paper. The BS value strictly depends on RTTmin; if RTTmin is greater then BS should 
also be greater (assuming given R).  

2.3 Forming TCP Traffic    

The desirable shape of sending window size evolution for any admitted TCP 
connection is shown on Fig. 4. In this scenario we assume that no packet losses are 
observed as long as the transmitted (sending) TCP window does not exceed the Wreq. 
However, this requires setting Wreq for advertised window size in the receiver. 
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Fig. 4. Exemplary ideal TCP behaviour 

TCP connection rate is changed and one can distinguish between two areas: (1) 
corresponding to the beginning phase of the connection, from the starting time to the 
moment when transmitted window size reaches Wreq, and (2) corresponding to the 
second phase (if occurs), when the transmitted window size is fixed and is equal to 
Wreq.  During the phase (1) the TCP starts with slow start mechanisms, changing its 
transmitted window size in accordance to negative exponential function, next passing 
to the congestion avoidance, during which the transmitted window is increased by 1 
each RTT. This means that the TCP connection rate is changed during the phase 1. As 
a consequence, it is rather difficult to consider for this period the requested rate Rreq. 
On the contrary, the phase (2) is characterized by stable behaviour of transmitted TCP 
window size, which is equal to Wreq. For this period, the TCP connection rate is 
almost fixed, with small changes caused by RTT variability. Summarizing, in the 
context of AC we will consider the Rreq demand as reached in phase (2).  

3 AC Algorithm 

The starting point for AC algorithm constitutes the TCP connection demands, which 
are in this case expressed in the form of:  

• the targeted requested rate Rreq. This rate should be reached during phase (2);  
• and, the information about minimum RTTmin..  



 

   
Now, on the basis of (Rreq, RTTmin), the next step is to set the parameters of 

associated token bucket (R, BS) and advertised window size Wreq.  For phase (2) of 
ideal TCP behaviour the following relation takes place:  

avgreqreq RTTWR /=     (5) 

,where RTTavg denotes average round trip time. 
The appropriate setting of token bucket parameter R should take into account the 

worst case traffic, which occurs when RTTmin. Therefore, R should satisfy:  

reqreq RRTTWR >= min/ .   (6) 

Then,     

min* RTTRWreq =  .    (7)  

By substituting (7) to (5), we receive the relation between R and Rreq, which is: 
 

minRTT

RTT
RR avg

req=  .     (8) 

However, for calculating R from (8), we need RTTavg. Notice that RTTavg depends 
on traffic load in the network. In the contents of AQUILA architecture, for evaluating 
RTTavg we may do simplified assumption that variable part of RTT, caused by 
buffering packets in the routers, is mainly the packet waiting times in the edge 
routers. The core network is over-dimensioned and, as a consequence, the packet 
waiting times in core routers are negligible. We can write 

DRTTRTTavg += min        (9) 

,where D is the variable part of RTT. Now, we can concentrate on evaluation of  D. 
The proposed approximation for D, which gives accurate results, was derived by 
assuming M/D/1 queuing system with ρ=Rreq/R and constant packet service time 
equal MTU/R, where MTU is the maximum transfer unit (in bits). The final formula 
for R is:   

))//(/( reqreqreqreq RARARARR +++=   (10) 

, where   )2/( min
2 RTTMTURA req=    (11) 

The BS is calculated in straightforward way from expression (1) by:  

ininreq LRLWBS /))(*( −=     (12) 

Now, we can define admission control rules, when the link capacity C and buffer 
size B (counted in number of packets). Assuming N running connections, new flow, 
characterized by (Rreq, RTTmin) with mapping to (Rnew,BSnew), is accepted only if: 

CRR new

N

i
i ≤+

�

=1

       (13) 

�

=

≤+
N
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newi BBSBS

1

    (14) 



  

4 Simulation Results 

This section contains simulation results showing the effectiveness of the investigated 
AC algorithm. In particular we present the results obtained assuming TCP 
connections differ in Rreq and RTT. For this purpose the bottleneck network topology 
is considered as depicted in Fig.5. In this configuration two edge routers are 
connected 2 Mbps link. Furthermore, 5 PCs and 2 servers are attached by LAN 
Ethernet to Router 1 and Router2, respectively. The TCP connections may be 
established between a pair PC-server. In addition, we can tune value of RTTmin  by 
introducing additional (constant) delay in the inter-router link or in the links between 
Router 2 and servers.   

 

Fig. 5. Tested network topology 

All tested TCP connections are of greedy type, sending packets of constant size, 
MTU =1500 bytes. The simulation results are obtained using OPNET software, 
assuming TCP Reno version. 

The TCP throughput characteristics referring to the cases with different number of 
running TCP connections, requested bit rates and RTTmin are presented in Tables 1 
and 2. 

Table 1. shows the results corresponding to the case, when conditions for all 
running TCP connections are the same. The system is uploaded to the AC limit (link 
of 2 Mbps and minimum sufficient buffer size) and serves different number of TCP 
flows depending on their requested rate. In particular, we consider the test cases of 5, 
4, 2 and 1 TCP connections. For instance, in the scenario with 5 connections, each 
flow has R value fixed as 400 kbps, while in the scenario with only 1 connection the 
R value is 2000 kbps. In addition, all cases were simulated for RTTmin equals 0.1 and 
0.2 sec.  

One can observe that the obtained minimum TCP throughput is a bit greater than 
the requested for all tested cases. Additionally, the simulations confirm the 
correctness of applied approximate formulas for RTTavg assessment.  

 
 
 



 

   
Table 1. Throughput characteristics (with 95% confidence interval): homogenous tcp 
connections. Thr- TCP throughput 

Number   
of flows 

 
5 

 
4 

 
2 

 
1 
 

RTT= 0.1s 
R  (kbps) 400 500 1000 2000 
Wreq(bytes) 5000 6250 12500 25000 
BS (bits) 38400 47500 90000 160000 
RTTavg(s) 
(anal) 

0.1388 0.1347 0.1245 0.1109 

RTTavg (s) 
(sim) 

0.116 0.114 0.113 0.114 

Rreq (kbps) 288.022 371.079 803.054 1 704.610 
Thr  (kbps) 332.7-354.9 387.7–411.0 818.4-846.7 1 721.8-1 746.3 

RTT= 0.2s 
R  (kbps) 400 500 1000 2000 
Wreq (bytes) 10000 12500 25000 50000 
BS (bits) 76800 95000 180000 320000 
RTTavg 

a(s)  0.2548 0.2490 0.2346 0.2245 
RTTavg

 s(s)  0.2164 0.2165 0.2163 0.2144 
Rreq (kbps) 313.897 401.527 852.305 1 781.740 
Thr  (kbps) 335.6-357.9 428.5-452.5 892.5–926.1 1 835.3–1 860.9 

 
Table 2 presents the simulation results for the case of heterogeneous TCP 

connections differing in both requested rate as well as RTTmin. The system is again 
uploaded to the AC limit equal 2 Mbps. The minimum received throughput is also 
close to the requested rate. In all tested cases the ideal behaviour of TCP was 
observed, as it was expected. 

Table 2. Throughput characteristics (with 95% confidence interval): heterogeneous TCP 
connections. Thr – TCP throughput 

TCP  
connections 

R   
(kbps) 

Wreq 
[bytes] 

BS 
[bits] 

Rreq 

(kbps) 
RTTmin  
(s) 

RTTavg 

(s)(anal) 
RTTavg  
(s)(sim) 

Thr  
(kbps) 

PC1-Serv1 400 288.022 
PC2-Serv2 400 

5000 
 

38400 
288.022 

0.1 0.1388 0.1178 310 – 331 

PC3-Serv3 600 490.268 

PC4-Serv4 600 

15000 112800 

490.268 

0.2 0.2447 0.2194 515 – 540 

 

5  Summary 

In this paper we have proposed new admission control algorithm for handling greedy 
TCP connections with QoS guarantees, which was tested in AQUILA QoS IP 



  

network. The QoS objective is to guarantee requested bit rates. For this purpose, the 
ideal TCP behaviour is maintained during the connection thanks to the appropriate 
setting of advertised window size in the receiver. The submitted parameters by a TCP 
source are: (1) requested rate, Rreq, and (2) minimum round trip time RTTmin. These 
parameters are mapped into the form of the parameters of single token bucket, which 
constitutes the base for admission control. The included simulation results show that 
the effectiveness of the proposed AC is satisfied. The requested bit rate by each TCP 
connection is always guaranteed, even if a mix of TCP connections differing in rate 
requests and round trip times share the same network resources.  
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