
Admission Contr ol for TCP Connections in QoS IP
Networ k

Wojciech Burakowski and Halina Tarasiuk

Warsaw University of Technology, Institute of Telecommunications,
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
{ woj t ek, hal i na} @t el e. pw. edu. pl

Abstract. The paper describes a new admission control (AC) algorithm for
greedy TCP connections. The algorithm has passed positive tests in pre-
production QoS IP network [2], developed inside European IST project
AQUILA1 network. The algorithm operates per single TCP flow and it
assumes the setting of advertised receiver TCP window size for maintaining
ideal TCP behaviour (no packet losses). The QoS objective is to guarantee the
requested bit rate, say Rreq, a user demands from the network. Furthermore, on
the basis of the Rreq and information about round trip time (RTT), the user
request is mapped into the form of single token bucket parameters, i.e. token
accumulating rate (R) and bucket size (BS), constituting input parameters for
AC decision. For admitted TCP connection the Rreq is guaranteed, even if
running connections differ in Rreq and RTTmin. Included simulation results
confirm the efficiency of the algorithm.

1 Introduction

A packet flow associated with single TCP connection is commonly named as elastic
one. This is due to the TCP behaviour, which allows for adjusting the TCP sending
data rate depending on traffic conditions in network. Therefore, on the contrary to the
flows produced by streaming applications usually requiring hard end-to-end QoS
guarantees e.g. [8], the elastic flows were traditionally handled in best effort way.
However, most of the currently available applications in Internet use, as a transport
protocol, TCP or TCP-like. The examples are: FTP, Telnet, e-commerce, WWW,
RealPlayer etc. Now, the challenge is to provide some QoS guarantees also for TCP
flows with special focus on minimum throughput [2,3]. Satisfying this objective is of
special interest in future QoS IP network. The key issue for providing QoS is the
admission control (AC).

The most promising solution for QoS IP network is the DiffServ architecture [4, 5].
One of the proposals for such a network, developed inside the AQUILA IST
European project [2], is an enhancement of generic Diffserv architecture by adding
new functionalities for admission control and resource management as well as by
defining new set of network services.

1 European IST project „ AQUILA – Adaptive Resource Control for QoS in IP-based Layered

Architecture” (2000-2003)

The AQUILA architecture is depicted on Fig. 1. It assumes that the AC agent
(ACA) is located at each Edge Routers (ER) for assuring that traffic submitted to the
core does not exceed given AC limit, being a part of total link capacity between the
ER and CR (Core Router). The value of AC limit is allocated by the Resource Control
Agent (RCA), situated on the top of the network [2]. The call handling scenario is the
following. A user, for requesting a connection, uses the end-user application toolkit
(EAToolkit) for sending his request to the ACA with traffic contract parameters. The
ACA admits/rejects this call, depending on current load on ER-CR link and assigned
AC limit.

H – Host

QMTool

Application
EAToolkit

Core DiffServ Network

ACA

ACA
RCA

Application
EAToolkit

H Access
Network ER

ER

ER

CR

CR

CR

CR

ISP

Access
Network H

ER – Edge Router
CR – CoreRouter

ACA

Fig. 1. General AQUILA network architecture

For now, four different types of packet flows have been recognized as typical in
Internet and requiring QoS guarantees. There are the following: (1) streaming
constant bit rate (e.g. VoIP), (2) streaming variable bit rate (e.g. video applications),
(3) elastic, produced by greedy TCP or TCP-like sources (e.g. FTP), and (4) elastic,
non-greedy TCP sources (e.g. home banking). In this spirit, four QoS network
services (NS) have been defined and implemented in AQUILA. Each NS is optimised
for specific type of packet flows and has its own traffic handling mechanisms,
including admission control.

In this paper we focus on the AC algorithm for the NS aimed at handling greedy
TCP flows with throughput guarantees as the QoS objective, packet flows of type (3).
The excellent candidate for using this NS is a FTP user. The proposed AC algorithm
operates per TCP flow and assumes the setting of advertised receiver TCP window
size, allowing us to maintain the ideal TCP behaviour (no packet losses). It assumes
that a user, before establishing TCP connection, submits its request to the network.
The traffic contract specifies the target requested bit rate, say Rreq. Furthermore, on
the basis of the Rreq and information about round trip time (RTT) of the TCP
connection, the user declarations are mapped into the form of single token bucket
parameters, say token accumulating rate (R) and bucket size (BS), constituting input
parameters for AC decision.

The investigated by many authors AC scheme for TCP connection, e.g. in [3, 13],

assumes to reject new TCP connections simply by dropping SYN and ACK SYN
segments in the case of the network congestion. For instance, the congestion can be
identified when number of waiting packets in the queue exceeds predefined threshold.
However, this approach could guarantee a fair share of link capacity between running
TCP connections but without possibility for providing them rate differentiation.
Another interesting results, which can be adopted, but not in straightforward way, for
the purpose of AC, were reported in [9] and corresponding to the possibility for
getting QoS differentiation of TCP flows by using token bucket marking mechanism.
The list of proposed AC algorithms for elastic traffic and based on some declarations
is presented in [14], but none of them is explicitly targeted for guaranteeing the
requested rate for TCP.

The rest of the paper is organized as follows. Sections 2 discusses the TCP flow
control mechanisms and consequences of using token bucket mechanism for the
purpose of TCP traffic description and policing, the factors taken into account in the
proposed AC, described in Section 3. Section 4 shows numerical results illustrating
effectiveness of the considered AC. Finally, the Section 5 concludes the paper.

2 Factors Influencing AC

Before describing the proposed AC algorithm for TCP greedy flows, we shortly recall
the TCP mechanisms for traffic control and consequences of using token bucket
mechanism for policing of TCP traffic. We argue that these two factors are crucial
from the AC viewpoint.

There have been several implementations of TCP protocol. The most important
modifications were the introduction of congestion and avoidance techniques. This
version is usually referred to as Tahoe TCP. Tahoe TCP regulates the number of
packets and it sends by inflating and deflating a window according to the network
requirements. In order to do this, the TCP sender uses the cumulative
acknowledgments sent by the receiver. If no packets are lost, TCP keeps inflating the
window in the three main phases: slow start, congestion avoidance and maximum
window [1,10,11,12], Reno, New-Reno and Sack were designed to improve the
performance of Tahoe TCP when packets are lost. However, when no packet loses
occur they behave like Tahoe TCP. Thus, in the ideal case of no packet loses all these
different implementation should have the same performance.

From the proposed AC algorithm viewpoint, the critical issue is to control the
changes (if any) of transmission window size. In the TCP case, it is rather difficult to
predict TCP behaviour when the packet losses are not under control. Therefore, for
the purpose of AC it is reasonable to consider ideal case, as discussed in [6]. The
modelling issues of TCP behaviour in best effort Internet network, which are taking
into account impact of packet losses on received throughput were discussed by many
authors, e.g. [7,9]. Additionally, in [9] the authors pointed out that using token bucket
marking mechanism is not sufficient for getting ideal TCP service differentiation.
Anyway, these studies assumed the overload network conditions, which are not
adequate when AC algorithm is employed.

2.1 Studied System for AC

The system for the AC is depicted on Fig.2. It consists of C capacity link with
associated buffer size B, and corresponds to the bottleneck link between ED and CR
routers in the AQUILA network (see Fig.1). A number of running TCP connections
share the system. In general case, these TCP connections may differ in the requested
bit rate Rreq and RTT.

A user, before establishing TCP connection, submits its request to the network.
The traffic contract specifies the target requested bit rate Rreq. Furthermore, on the
basis of the Rreq and information about round trip time (RTT) of the TCP connection,
the user request is mapped into the form of single token bucket parameters, say rate
(R) and bucket size (BS), constituting input parameters for AC decision. This traffic is
policed at the network entry point.

TCP#1 (Rreq
(1), RTT(1)) TB#1 (R(1), BS(1))

Buffer of size B

Output link of capacity C

TCP#2 (Rreq
(2), RTT(2)) TB#2 (R(2), BS(2))

TCP#n (Rreq
(n), RTT(n)) TB#n (R(n), BS(n))

in-profile packets

in-profile packets

in-profile packets

Fig. 2. System with n running TCP connections: TCP#n –n-th TCP source; TB#n – Token
Bucket mechanism dedicated for flow#n

2.2 Consequences of Applying Token Bucket Mechanism

Ideal AC should guarantee that TCP source would get throughput/goodput close to
Rreq value. Let us remind that token bucket mechanism operates on deterministic
parameters while TCP sends packets in a non-regular way accordingly to current
sending/transmission window and RTT. As a consequence, one can observe that the
traffic produced by a single TCP source has a tendency to follow rather statistical
behaviour than deterministic one. Therefore, we argue that this what could be policed
by the token bucket should be closely related to the value of TCP sending window
size, like maximum guaranteed/requested value of TCP sending window size Wreq.
Let us remind, that token bucket polices the worst case traffic, which could occurs
sporadically that one can observe in the TCP traffic. The value of Wreq should be
specified for traffic contract (in direct or non-direct way). Starting from this point, we
deduce for token bucket parameters the following relations:

reqinin WRLBSL =−)/(* (1)

, where Lin denotes the input link capacity (in bps).

The expression (1) shows the way for dimensioning BS on the basis of assumed

Wreq. The Wreq denotes the maximum packet burst (ON period), counted in bits, which
could be emitted by the TCP source. Therefore, the time duration of ON period, TON,
in this case is:

inreqON LWT /= (2)

OFFON TTRBS +≥/ (3)

, where TOFF is the time duration between packet bursts (OFF period). From (3) we
can obtain additional constrains referring to the minimum value of RTT for TCP
connection. The condition for RTTmin results from (2) and (3), and is the following:

RBSTTRTT OFFON /min ≤+= (4)

The condition (4) for RTTmin results from the fact that the token bucket size should
be fulfilled to the maximum value (=BS) before starting new ON period. Notice that
less rigorous traffic pattern is generated when current RTT is greater than RTTmin.

Summarizing, from the point of view of the token bucket mechanism the worst
case traffic, which a TCP-controlled stream could produce is obviously of ON/OFF
type, as depicted on Fig.3.

Wreq*MTU

RTTmin

ON period OFF period

Fig. 3. The worst case traffic produced by a TCP-controlled stream from the point of view of
the token bucket mechanism

In fact, the token bucket mechanism has ability for distinguishing between in- and
out-of-profile packets. The in-profile packets are in accordance with the traffic
declarations while the out-of-profile packets excess the policed profile. Therefore,
there is reasonable to consider out-of-profile traffic as an additional, non-controlled
traffic, which is not taken into account by AC. So, the only traffic for which we can
give some guarantees corresponds to the in-profile traffic. As a consequence, in
further part of this contribution we focus only on AC for in-profile traffic.

The requirement for the AC is to give guarantees that the declared (requested)
volume of throughput by a user Rreq will be provided. Taking into account that we use
token bucket mechanism for traffic contract policing, with above mentioned
limitations, we argue that additional information about RTTmin is needed. The
knowledge of the RTTmin allows us for proper tuning of token bucket parameters (see
eq. 4). Anyway, the guaranteed Rreq will never exceed the assumed token
accumulating rate R and this results in straightforward way from the token bucket
concept. The relations between Rreq and R will be discussed in the further part of the

paper. The BS value strictly depends on RTTmin; if RTTmin is greater then BS should
also be greater (assuming given R).

2.3 Forming TCP Traffic

The desirable shape of sending window size evolution for any admitted TCP
connection is shown on Fig. 4. In this scenario we assume that no packet losses are
observed as long as the transmitted (sending) TCP window does not exceed the Wreq.
However, this requires setting Wreq for advertised window size in the receiver.

Wreq

advertised
 window

 time

 RTT

W=ssthresh

Wmax

transmitted
window

W+1
W+2

Slow start

Sender Receiver

 time

Fig. 4. Exemplary ideal TCP behaviour

TCP connection rate is changed and one can distinguish between two areas: (1)
corresponding to the beginning phase of the connection, from the starting time to the
moment when transmitted window size reaches Wreq, and (2) corresponding to the
second phase (if occurs), when the transmitted window size is fixed and is equal to
Wreq. During the phase (1) the TCP starts with slow start mechanisms, changing its
transmitted window size in accordance to negative exponential function, next passing
to the congestion avoidance, during which the transmitted window is increased by 1
each RTT. This means that the TCP connection rate is changed during the phase 1. As
a consequence, it is rather difficult to consider for this period the requested rate Rreq.
On the contrary, the phase (2) is characterized by stable behaviour of transmitted TCP
window size, which is equal to Wreq. For this period, the TCP connection rate is
almost fixed, with small changes caused by RTT variability. Summarizing, in the
context of AC we will consider the Rreq demand as reached in phase (2).

3 AC Algorithm

The starting point for AC algorithm constitutes the TCP connection demands, which
are in this case expressed in the form of:

• the targeted requested rate Rreq. This rate should be reached during phase (2);
• and, the information about minimum RTTmin..

Now, on the basis of (Rreq, RTTmin), the next step is to set the parameters of

associated token bucket (R, BS) and advertised window size Wreq. For phase (2) of
ideal TCP behaviour the following relation takes place:

avgreqreq RTTWR /= (5)

,where RTTavg denotes average round trip time.
The appropriate setting of token bucket parameter R should take into account the

worst case traffic, which occurs when RTTmin. Therefore, R should satisfy:

reqreq RRTTWR >= min/ . (6)

Then,

min* RTTRWreq = . (7)

By substituting (7) to (5), we receive the relation between R and Rreq, which is:

minRTT

RTT
RR avg

req= . (8)

However, for calculating R from (8), we need RTTavg. Notice that RTTavg depends
on traffic load in the network. In the contents of AQUILA architecture, for evaluating
RTTavg we may do simplified assumption that variable part of RTT, caused by
buffering packets in the routers, is mainly the packet waiting times in the edge
routers. The core network is over-dimensioned and, as a consequence, the packet
waiting times in core routers are negligible. We can write

DRTTRTTavg += min (9)

,where D is the variable part of RTT. Now, we can concentrate on evaluation of D.
The proposed approximation for D, which gives accurate results, was derived by
assuming M/D/1 queuing system with ρ=Rreq/R and constant packet service time
equal MTU/R, where MTU is the maximum transfer unit (in bits). The final formula
for R is:

))//(/(reqreqreqreq RARARARR +++= (10)

, where)2/(min
2 RTTMTURA req= (11)

The BS is calculated in straightforward way from expression (1) by:

ininreq LRLWBS /))(*(−= (12)

Now, we can define admission control rules, when the link capacity C and buffer
size B (counted in number of packets). Assuming N running connections, new flow,
characterized by (Rreq, RTTmin) with mapping to (Rnew,BSnew), is accepted only if:

CRR new

N

i
i ≤+

�

=1

 (13)

�

=

≤+
N

i
newi BBSBS

1

 (14)

4 Simulation Results

This section contains simulation results showing the effectiveness of the investigated
AC algorithm. In particular we present the results obtained assuming TCP
connections differ in Rreq and RTT. For this purpose the bottleneck network topology
is considered as depicted in Fig.5. In this configuration two edge routers are
connected 2 Mbps link. Furthermore, 5 PCs and 2 servers are attached by LAN
Ethernet to Router 1 and Router2, respectively. The TCP connections may be
established between a pair PC-server. In addition, we can tune value of RTTmin by
introducing additional (constant) delay in the inter-router link or in the links between
Router 2 and servers.

Fig. 5. Tested network topology

All tested TCP connections are of greedy type, sending packets of constant size,
MTU =1500 bytes. The simulation results are obtained using OPNET software,
assuming TCP Reno version.

The TCP throughput characteristics referring to the cases with different number of
running TCP connections, requested bit rates and RTTmin are presented in Tables 1
and 2.

Table 1. shows the results corresponding to the case, when conditions for all
running TCP connections are the same. The system is uploaded to the AC limit (link
of 2 Mbps and minimum sufficient buffer size) and serves different number of TCP
flows depending on their requested rate. In particular, we consider the test cases of 5,
4, 2 and 1 TCP connections. For instance, in the scenario with 5 connections, each
flow has R value fixed as 400 kbps, while in the scenario with only 1 connection the
R value is 2000 kbps. In addition, all cases were simulated for RTTmin equals 0.1 and
0.2 sec.

One can observe that the obtained minimum TCP throughput is a bit greater than
the requested for all tested cases. Additionally, the simulations confirm the
correctness of applied approximate formulas for RTTavg assessment.

Table 1. Throughput characteristics (with 95% confidence interval): homogenous tcp
connections. Thr- TCP throughput

Number
of flows

5

4

2

1

RTT= 0.1s
R (kbps) 400 500 1000 2000
Wreq(bytes) 5000 6250 12500 25000
BS (bits) 38400 47500 90000 160000
RTTavg(s)
(anal)

0.1388 0.1347 0.1245 0.1109

RTTavg (s)
(sim)

0.116 0.114 0.113 0.114

Rreq (kbps) 288.022 371.079 803.054 1 704.610
Thr (kbps) 332.7-354.9 387.7–411.0 818.4-846.7 1 721.8-1 746.3

RTT= 0.2s
R (kbps) 400 500 1000 2000
Wreq (bytes) 10000 12500 25000 50000
BS (bits) 76800 95000 180000 320000
RTTavg

a(s) 0.2548 0.2490 0.2346 0.2245
RTTavg

 s(s) 0.2164 0.2165 0.2163 0.2144
Rreq (kbps) 313.897 401.527 852.305 1 781.740
Thr (kbps) 335.6-357.9 428.5-452.5 892.5–926.1 1 835.3–1 860.9

Table 2 presents the simulation results for the case of heterogeneous TCP

connections differing in both requested rate as well as RTTmin. The system is again
uploaded to the AC limit equal 2 Mbps. The minimum received throughput is also
close to the requested rate. In all tested cases the ideal behaviour of TCP was
observed, as it was expected.

Table 2. Throughput characteristics (with 95% confidence interval): heterogeneous TCP
connections. Thr – TCP throughput

TCP
connections

R
(kbps)

Wreq
[bytes]

BS
[bits]

Rreq

(kbps)
RTTmin
(s)

RTTavg

(s)(anal)
RTTavg
(s)(sim)

Thr
(kbps)

PC1-Serv1 400 288.022
PC2-Serv2 400

5000

38400
288.022

0.1 0.1388 0.1178 310 – 331

PC3-Serv3 600 490.268

PC4-Serv4 600

15000 112800

490.268

0.2 0.2447 0.2194 515 – 540

5 Summary

In this paper we have proposed new admission control algorithm for handling greedy
TCP connections with QoS guarantees, which was tested in AQUILA QoS IP

network. The QoS objective is to guarantee requested bit rates. For this purpose, the
ideal TCP behaviour is maintained during the connection thanks to the appropriate
setting of advertised window size in the receiver. The submitted parameters by a TCP
source are: (1) requested rate, Rreq, and (2) minimum round trip time RTTmin. These
parameters are mapped into the form of the parameters of single token bucket, which
constitutes the base for admission control. The included simulation results show that
the effectiveness of the proposed AC is satisfied. The requested bit rate by each TCP
connection is always guaranteed, even if a mix of TCP connections differing in rate
requests and round trip times share the same network resources.

6 References

1. Allman, M., Paxson, V., Stevens, W.: TCP Congestion Control. Internet RFC 2581, April
1999

2. Bak, A., Burakowski, W., Ricciato, F., Salsano, S., Tarasiuk, H.: Traffic handling in
AQUILA QoS IP Networks. Quality of Future Internet Services, Lecture Notes in
Computer Science 2156, Springer 2001

3. Benameur, M., Ben Fredj, S., Delcoigne, F., Oueslati-Boulahia, S., and Roberts, J.W.:
Integrated Admission Control for Streaming and Elastic Traffic. Quality of Future Internet
Services, Lecture Notes in Computer Science 2156, Springer 2001

4. Blake, S. et al.: An Architecture for Differentiated Services. Internet RFC 2475, December
1998

5. Bernet, Y. et al.: An Informal Management Model for Diffserv Routers. Internet Draft,
draft-ietf-diffserv-model-06.txt, February 2001

6. ElAarag, H., Bassiouni, M.: Performance evaluation of TCP connections in ideal and non-
ideal network environments. Computer Communications 24(2001), pp. 1769-1776

7. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP Throughput: A Simple
Model and its Empirical Validation. Proc. ACM SIGCOM’98, August 1998

8. Roberts, J., Mocci, U., Virtamo J. (eds.): Final report COST 242, Broadband network
teletraffic: Performance evaluation and design of broadband multiservice networks.
Lectures Notes in Computer Science 1155, Springer 1996

9. Sahu, S., Nain, P., Towsley, D., Diot, C., Firoiu, V.: On Achievable Service Differentiation
with Token Bucket Marking for TCP. Proc. ACM SIGMETRICS’00, Santa Clara, CA,
June 2000

10. Stevens, W.R.: TCP/IP Illustrated, Volume1: The Protocols. Addison-Wesley Publishing
Company, 1996

11. Stevens, W.R.: TCP/IP Illustrated, Volume2: The Implementation. Addison-Wesley
Publishing Company, 1996

12. Stevens, W.R.: TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms. Internet RFC 2001, January 1997

13. Mortier, R., Pratt, I., Clark, C., and Crosby, S.: Implicit Admission Control. IEEE Journal
on Selected Areas in Communications, Vol. 18, No. 12, December 2000

14. Brichet, F., Mandjes, M., Sanchez-Canabate, M.F.: Admission control in multiservice
networks. Proceeding of the Mid-Term Seminar, 1999, Villamora, Portugal

