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Abstract. The paper presents an approach for providing requested throughput 
guarantees, say Rreq, for greedy TCP (Transmission Control Protocol) 
connections (e.g. ftp). For this purpose, we recommend at the network entry 
point to shape, with rate R,  traffic emitted by each of TCP connections as well 
as to perform CAC (Connection Admission Control) function to limit number of 
running connections. By using shaper the TCP traffic submitted to the network 
tends to the form of constant bit rate (CBR). This feature permits us to apply a 
well known CAC algorithm relevant for CBR traffic. In the case of CAC limit 
we observe excellent equal bandwidth sharing between competing TCP 
connections when R=Rreq. For the case when the system is lightly loaded we 
discuss some strategies allowing for TCP connections to increase their 
throughput by setting R>Rreq.    

1 Introduction 

The traffic carried by the Internet is rather of complicate nature and is a mixture of 
traffic generated by a variety of applications. When, in addition, we use only one 
service class, named best effort, the only way to satisfy the users about the packet 
transfer quality is to provision the network on an over-dimensioned state. However, 
even if it is possible for the IP core it is rather difficult to apply this strategy in the 
access networks as WiFi, UMTS, xDSL or LAN. Therefore, to improve quality of 
service (QoS) in the Internet other solutions are currently extensively studied and 
tested. One of them is to maintain at the network layer a number of different service 
classes instead of best effort only. Each service class is aimed to provide strictly 
determined QoS guarantees about packet transfer characteristics (delay, losses) for 
selected types of applications. For example, we can define a separate service class for 
handling exclusively VoIP connections. The set of currently considered service 
classes is presented in [1]. In this paper we focus on one of these classes, named the 
High Throughput Data (HTD), which is dedicated for handling traffic generated by 
greedy TCP connections (e.g. ftp). The definition and implementation of this class is 
currently under investigation by the EuQoS1 project [7], which is focused on end-to-
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end quality of service support over heterogeneous networks as IP, WiFi, UMTS, 
LAN/Ethernet, xDSL, and Satellite.  
  We assume that for HTD class we have assigned an amount of  network resources 
(buffer size, link rate) in each part of the network. Consequently, the traffic submitted 
to other classes will not disturb the service of the traffic submitted to the class in 
question. This can be achieved by applying appropriate packet scheduling mechanism 
e.g. WFQ (Weighted Fair Queuing) and CAC (Connection Admission Control) 
function. Furthermore, we assume that for HTD class we submit only traffic 
generated by the greedy TCP flows and we focus on providing throughput guarantees 
for each connection. However, we do not forget about aggressive capabilities of TCP 
for getting more bandwidth if available.  

The approach we propose assumes that a new TCP connection requests some 
throughput guarantees, named Rreq. This request is evaluated by appropriate CAC 
function. For admitted connection, at the network entry point the TCP traffic is 
submitted to the shaper with the rate R and, in general case, R≥Rreq. To set the R>Rreq 
we consider some strategies when the system is lightly loaded. 

The investigated in this paper solution can be regarded as a continuation of the 
method described in [3] and related to the minimum throughput guarantees for greedy 
TCP connections in the case of Premium Multi-Media (PMM) service class (similar 
as the considered HTD class), as defined in AQUILA2  project [4]. For PMM service 
we assumed that a given TCP connection may get minimum requested throughput but 
not more even available bandwidth. So, in the approach presented in this paper the 
idea is to get an advantage of the TCP behaviour that allows to increase throughput if 
possible. Summary of all approaches tested in the AQUILA network for the PMM 
service are presented in [4] and [6]. 

In the literature we can also find the investigated by many authors CAC schemes 
for TCP connections, e.g. in [9] and [10] authors assume to reject new TCP 
connections simply by dropping SYN and ACK SYN segments in the case of the 
network congestion. For instance, the congestion can be identified when number of 
waiting packets in the queue exceeds predefined threshold. However, this approach 
could guarantee a fair share of link capacity between running TCP connections but 
without possibility for providing them throughput guarantees or throughput 
differentiation. Another interesting result, which can be adopted, but not in a 
straightforward way, for the purpose of CAC, is reported in [11]. The presented 
approach is based on using token bucket marking mechanism. The list of proposed 
CAC algorithms for elastic traffic and based on some declarations is also presented in 
[12], but none of them is explicitly targeted for guaranteeing the requested rate for 
TCP.  

The paper is organised as follows. In section 2 we discuss the strategy for using 
TCP traffic shaping vs. the bandwidth sharing. Section 3 presents the admission 
control rules and section 4 contains the proposed schemes for assigning shaping rates. 
Finally, section 5 concludes the paper. 
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2 Shaping vs. bandwidth shar ing 

In the literature the bandwidth sharing topic has received a lot of attention e.g. in [5]. 
In this section we point out on some advantages of shaping the traffic emitted by TCP 
flow. For this purpose, we compare two systems, without and with shapers, as 
depicted on Fig. 1.     

 
 
 

 
 
 
 
 
 
 

 

 

 

Fig. 1. Systems without and with shapers 

For both cases, we model the network by a single bottleneck link with capacity C and 
buffer size B. Fig. 1a shows a typical scenario of system without shapers, when a 
number of TCP sources submit traffic to the system. However, for this scheme it has 
been recognised that even the TCP connections have similar RTT the throughput 
received by each of them may differ essentially. This is due to the bursty nature of 
TCP traffic. On the contrary, when we use the shapers, as depicted on the Fig. 1b, one 
may expect that TCP traffic is smoothed and, in this way, more equal bandwidth 
sharing and less packet losses can be achieved. Furthermore, by decreasing shaping 
rate the TCP traffic becomes more smoothed while the additional packet delay 
introduced by the shaper increases. In the limit case the TCP traffic tends to constant 
bit rate traffic. In Table 1 we show exemplary numerical results for the system with 
100 homogeneous TCP connections submitting traffic to the link of capacity C=100 
Mbps and buffer size B=20 packets. For each of TCP sources we assumed TCP Reno 
with segment size=1500 bytes, advertised window size=64 KB. The reported results 
correspond to the systems with no shapers and with shapers of rates R=1, 1.1, 1.2, 1.5 
or 2 Mbps. Furthermore, the minimum delay (min RTT) introduced by the network 
part was set to 0, 30 or 60 ms. Finally, the effectiveness of the system was evaluated 
by simulation (in ns-2) from the point of view of the following parameters: the value 
of average RTT (including additional delay introduced by the shaper), packet loss rate 
per TCP connection (with 95% confidence interval) and throughput received by each 
of the TCP connection (with 95% confidence interval).     
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Table 1. Exemplary numerical results showing the impact of the TCP traffic shaping for the 
case with  n=100, B=20, C=100 Mbps 
Min RTT = 0 msec 

Shaping 
rate R [Mbps] 

Average 
RTT [ms] 

Packet loss ratio  
per TCP connection 

 

Throughput 
per TCP connection 

[Mbps] 
1 528 0 0.999±0.0001 
1.1 193 1.5 10-2 ± 2.0 10-3 0.992±0.015 
1.2  140 4.1 10-2±.3.0 10-3 0.95±0.03 
1.5 74 3.910-2±1.310-3 1.0±0.18 
2 25 5.0 10-2±6.6 10-3 1.0 ±0.227 
No shaping - Almost all TCP connections were stopped 

Min RTT = 30 msec 

Shaping rate 
R [Mbps] 

Average 
RTT [ms] 

Packet loss ratio  
per TCP connection 

Throughput  
per TCP connection 

[Mbps] 
1 528 0 0.999±0.0001 
1.1 207 1.4 10-2 ± 2.0 10-3 0.999±0.02 
1.2  120 1.7 10-2±.1.0 10-3 0.999±0.02 
1.5 60 2.410-2±2.010-3 0.964±0.03 
2 40 3.2 10-2±3.2 10-3 0.940±0.06 

No shaping 31 2.6 10-2±3.0 10-3 0.933±0.123 

Min RTT = 60 msec 

Shaping rate 
R [Mbps] 

Average 
RTT [ms] 

Packet loss ratio  
per TCP connection 

Throughput  
per TCP connection 

[Mbps] 
1 528 0 0.999±0.0001 
1.1 209 0.85 10-2 ± 1.5  10-3 0.976±0.017 
1.2  133 1.1 10-2 ±  1.6 10-3 0.992±0.025 
1.5 88 1.5 10-2 ± 1.2 10-3 0.973±0.038 
2 67 1.6 10-2 ±  1.7 10-3 0.948±0.05 

No shaping 61 1.6 10-2 ±  2.0 10-3 0.982±0.07 
 

The presented results say that the impact of the shaper, as it was expected, in the 
considered case is significant. First of all, by using the shaper and fixing the rate at 
the value of equal bandwidth sharing (in the considered system, shaping rate R=1 
Mbps) we receive very desirable results that throughput values for each of running 
connections are similar. In addition, no packet losses were observed. On the contrary, 
for the system without traffic shaping, the received throughput by the TCP 
connections differ essentially and for the case of min RTT=0 almost all TCP 
connections were stopped. So, we conclude that the best solution for getting the equal 
share between TCP connections is to use the traffic shapers with the rate = C/n, where 
n is the number of connections. It is worth to mention that for this case the TCP traffic 



outgoing from the shaper and submitted to the link tends to constant bit rate traffic 
when the number of running connections is large. This observation will help us in 
proposing CAC algorithm (see section 3).   

Other conclusions coming from the Table 1 are the following: 
• Additional delay introduced by the shaper has no significant impact on the 

received TCP throughput. 
• Increasing the shaping rate above 1 Mbps makes larger variation of the 

throughput received by the TCP connection. This effect is not surprising 
since now the offered TCP traffic can temporary exceeds the link capacity 
and no sufficient mechanisms for getting equal sharing bandwidth.  

• By increasing the shaping rate above 1.1 Mbps we decrease the packet loss 
ratio but not in an essential way. 

• Impact of using shaper is more visible for the cases with smaller min RTT. 
 

Another observation is that when traffic load counted as: 
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where n denotes the number of running connections and Ri (i=1,…,n) is the shaping 
rate of the i-th connection, is not greater than the link capacity C then by increasing 
buffer size B we may only minimize packet losses, if they are. For example, in the 
case of R=1 Mbps and B=20, the measured packet loss ratio was 0 and increasing 
buffer size, e.g. up to 100, does not change anymore the system performances.  

3 Connection Admission Control 

The motivation for applying CAC function in the case of greedy TCP connections is 
to provide throughput guarantees for admitted connections. In this section we present 
a method for CAC for the case of the system from Fig. 1b as described in section 2. 
So, we assume that TCP traffic is shaped at the network entry point. For the clarity of 
the text presentation, we focus on the case when the TCP connections are 
homogenous, it means they have the same values of min RTT and the advertised 
window size, as well as the throughput requested by each of the connections is the 
same.  

For such a system we state that if we apply CAC the throughput received by the 
connection i (i=1,2,..n), when n is the number of running TCP connections, is equal to 
the shaping rate Ri. Anyway, this throughput is possible to be got only if: 
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where ρ is the utilization factor (ρ<1). As one can realize, the formula (2) is  the same 
as formula for CAC function [8] in the case when the system serves CBR 
connections. In fact, when we use shaper for TCP traffic, the traffic outgoing from the 
shaper takes a form of CBR traffic, with rate equal to the shaping rate. Note that a 
greedy TCP source will tend to use whole capacity allocated to it. The value of 
parameter ρ we calculate from the analysis of the M/D/1 queuing model [8] taking 
into account the values of the target packet loss ratio (IPLR - IP Packet Loss Ratio) 
and buffer size B. The formula is the following:  
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So, for the case of the link capacity C and the requested throughput for each 
connection equal to Rreq the maximum number of admitted connections, say Nmax, we 
calculate from: 
 

CRN req ρ≤max , (4) 

 
where value of ρ we calculate assuming low value of IPLR, e.g. IPLR=10-3 as typical 
for the Internet network with QoS [2]. In fact, for TCP Reno setting IPLR on that 
level does not degrade the TCP throughput comparing with setting IPLR on the value 
close to 0.  

Table 2 and Table 3 contain the exemplary numerical results corresponding to the 
verification of the CAC formula. Table 2 corresponds to CAC calculation while Table 
3 corresponds to the verification by simulation. For CAC calculation, as the input data 
are: buffer size B, packet loss ratio IPLR and the rate requested by each of the TCP 
connections. The results are the values of utilization factor ρ and maximum number 
of the TCP connections we can admit. To verify the CAC function, we measure the 
values of IPLR and received throughput of each connection assuming the values of B, 
Rreq and Nmax from CAC calculation.  

Table 2. Exemplary numerical results corresponding to CAC calculation, assumed link 
capacity C=100 Mbps 

Input data for CAC CAC calculation 
Buffer size B 

[packets] 
Packet loss 
ratio IPLR 

Requested 
throughput  

Rreq = R [Mbps] 

ρ - utilization 
factor 

Nmax – max.  
number of 

connections 
10 10-3 1  0.74 74 
20 10-3 5 0.85 17 
50 10-3 10 0.935 9 

 



Table 3. Exemplary numerical results corresponding to CAC verification by simulation, 
assumed link capacity C=100 Mbps  

Input data for simulation Simulation results 
Buffer size 

B  
[packets] 

Requested 
throughput Rreq = R 

[Mbps] 

Nmax – max.  
number of 

connections 

Packet loss ratio 
IPLR 

Received rate 
per 

connection 
[Mbps] 

10 1  74 0 1±0.001 
20 5 17 0 4.998±0.003 
50 10 9 0 9.999±0.002 

   
The results presented in Table 3 confirm our expectation about applied CAC function. 
For all considered exemplary cases, the received TCP throughput was exactly the 
same as the requested one. 

4 Assigning shaping rates 

The exemplary numerical results referring to the verification of the assumed CAC 
function and presented in Table 3 were obtained for the case when the shaping rates 
are the same for each of running TCP connections under CAC limit. The simplest 
way, say scheme #1, for achieving the above is that for every new connection we set 
the shaping rate at the value corresponding to the CAC limit conditions, e.g. 
according to the requested throughput.   

In this section we focus on the problem of assigning the shaping rates for 
achieving the following goals: 

• when the system gets the CAC limit conditions, the shaping rates should be 
assigned according to the requested throughput;  

• when the system is below CAC limit conditions, the shaping rates should be 
assigned to share the whole system capacity in a fair way. In this case, the 
received TCP throughput for running connections is above the requested 
rates.    

 
The solution, say scheme #2, for getting the above goals can be possible only when 
we update the shaping rates for each of running connections every time when new 
connection starts or one of the running connections terminates. For example, if C=100 
Mbps and n=10 then each connection may get throughput equal to10 Mbps, if n=20 
then each connection may get 5 Mbps. Unfortunately, this can be achieved only if the 
shaping rates in the considered cases will be equal to 10 Mbps and 5 Mbps, 
respectively. However, it is obvious that such approach can be rather difficult to 
implement since it requires too many actions when number of running connections is 
large.  

Fig. 2 shows the characteristics of the usage capacity as a function of admitted 
TCP connections for the schemes #1 and #2. These schemes can be regarded as limit 
cases. We can say that scheme#1 is the most pessimistic while scheme#2 is the most 



optimistic. Anyway, we are searching for a scheme that can be relatively easy for 
implementing and gives characteristics in the potential working area as depicted on  

Fig. 2. Of course, it would be desirable that the characteristics of such a scheme 
will tend to be closer to scheme#2. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Usage capacity vs. number of running TCP connections for schemes#1 and 2 

Taking into account the drawbacks of scheme#1 and #2, we propose an intermediate 
scheme for assigning the shaping rates. It is evident that one can find a number of 
such schemes. In this paper, we present a scheme, say scheme#3, which assumes that 
the shaping rate assigned for a new connection is set at the beginning and is not 
changed during the connection. For scheme#3, the values of the shaping rates for a 
new connection we assign as follows. The value of the shaping rate, say Rnew,  we 
calculate on the basis of the equation: 
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where k is a constant factor, k > 1. By using expression (5), we assign the higher 
shaping rate when the system is lightly loaded, as it is done in scheme#2. If the 
system load increases then the assigned shaping rates for new connections decrease 
but never below Rreq, as in scheme#1. As a consequence, for scheme#3 the CAC rule 
according to (4) is not valid. Instead of (4), now the CAC rule is as follows.  New 
flow can be admitted only if: 
 

CRR
ni

i
inew ρ≤+ � =

=1

, (6) 

 
where ρ is calculated from (3). Note that in scheme#3 for each connection we 
guarantee throughput resulting from the assigned shaping rates.     

Table 4 shows the received simulation results for the systems with scheme#1, #2 
and #3, each with C=100 Mbps, B= 10 packets and Rreq=1 Mbps. For each TCP 
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connection we want to transfer file of constant size equal to 10Mbits. In addition for 
scheme#3, we set k=3. The traffic conditions for all compared systems were assumed 
as follows. IPLR is equal to 10-3. Then, from (3) we receive value of ρ=0.74. So, the 
maximum number of admitted connections in each system is 74. Next, the requests 
for new connections arrive to the systems according to Poisson process with the 
intensity λ. Assuming the call blocking probability for scheme#1 at the level of 1%, 
the value of  λ (λ=5.98 calls/sec) we calculate from Erlang formula with n=74 and 
connection service time=10Mbits / 1Mbps=10 sec.   

Table 4. Comparison of schemes #1, #2 and  #3 

Scheme Mean file transfer 
time 
[sec] 

Mean system state 
when call blocking 

Call blocking 
probability 

Scheme#1 10 74 1% 
Scheme#2 0.319 no blocking no blocking 
Scheme#3 3.1 31 0.6% 

 
The presented exemplary results in Table 4 say that by appropriately assigning the 
shaping rates, e.g. by using scheme#3, for TCP connections we can get better resource 
utilisation of the system and lower file transfer times. The ideal scheme is the 
scheme#2, for which we can get mean transfer file 0.319 sec and no call blocking was 
observed. Anyway, by using scheme#3 we have much better system behaviour than 
for scheme#1. Comparing these two schemes, scheme#3 significantly overcomes 
scheme#1 since we observe 3 times shorter transfer times and 2 times lower call 
blocking.  Summarising, by using shaping rates for greedy TCP connections with a 
possibility for setting these rates depending on the current system load we can 
guarantee the requested throughput for each of the connections and we can increase 
this throughput for the connections arriving during the periods when the system is 
lightly loaded.      

5 Conclusions   

In this paper we have presented an approach for handling greedy TCP connections 
requiring throughput guarantees. In this approach we apply traffic shapers as well as 
CAC function. By shaping TCP traffic we do smoothing of this traffic even to the 
form of CBR traffic as well as we observe excellent fairness between competing TCP 
connections in access to the resources. Furthermore, as we have proved, the CAC 
function for handling TCP connections can be the same as for handling CBR streams. 
Another presented result corresponds to the strategy for assigning the shaping rate. It 
appears that by using the strategy that takes into account the current system load we 
can provide higher throughput than the requested one but only for the connections that 
start at the moments when system is not heavy loaded. This result is very desirable 
since limits the impact of the shapers when the system is essentially below the CAC 
limit.  

Further work is focus on implementation of the discussed scheme in the testbeds.       
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