
Application of Admission Control and Traffic Shaping
for providing TCP Throughput Guarantees

Halina Tarasiuk, Robert Janowski and Wojciech Burakowski

Institute of Telecommunications, Warsaw University of Technology,
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

{ halina, robert, wojtek}@tele.pw.edu.pl

Abstract. The paper presents an approach for providing requested throughput
guarantees, say Rreq, for greedy TCP (Transmission Control Protocol)
connections (e.g. ftp). For this purpose, we recommend at the network entry
point to shape, with rate R, traffic emitted by each of TCP connections as well
as to perform CAC (Connection Admission Control) function to limit number of
running connections. By using shaper the TCP traffic submitted to the network
tends to the form of constant bit rate (CBR). This feature permits us to apply a
well known CAC algorithm relevant for CBR traffic. In the case of CAC limit
we observe excellent equal bandwidth sharing between competing TCP
connections when R=Rreq. For the case when the system is lightly loaded we
discuss some strategies allowing for TCP connections to increase their
throughput by setting R>Rreq.

1 Introduction

The traffic carried by the Internet is rather of complicate nature and is a mixture of
traffic generated by a variety of applications. When, in addition, we use only one
service class, named best effort, the only way to satisfy the users about the packet
transfer quality is to provision the network on an over-dimensioned state. However,
even if it is possible for the IP core it is rather difficult to apply this strategy in the
access networks as WiFi, UMTS, xDSL or LAN. Therefore, to improve quality of
service (QoS) in the Internet other solutions are currently extensively studied and
tested. One of them is to maintain at the network layer a number of different service
classes instead of best effort only. Each service class is aimed to provide strictly
determined QoS guarantees about packet transfer characteristics (delay, losses) for
selected types of applications. For example, we can define a separate service class for
handling exclusively VoIP connections. The set of currently considered service
classes is presented in [1]. In this paper we focus on one of these classes, named the
High Throughput Data (HTD), which is dedicated for handling traffic generated by
greedy TCP connections (e.g. ftp). The definition and implementation of this class is
currently under investigation by the EuQoS1 project [7], which is focused on end-to-

1 EuQoS - End-to-end Quality of Service Support over Heterogeneous Networks, 6 Framework

European project, 2.3.5 Research Networking Test Beds, Integrated Project

end quality of service support over heterogeneous networks as IP, WiFi, UMTS,
LAN/Ethernet, xDSL, and Satellite.
 We assume that for HTD class we have assigned an amount of network resources
(buffer size, link rate) in each part of the network. Consequently, the traffic submitted
to other classes will not disturb the service of the traffic submitted to the class in
question. This can be achieved by applying appropriate packet scheduling mechanism
e.g. WFQ (Weighted Fair Queuing) and CAC (Connection Admission Control)
function. Furthermore, we assume that for HTD class we submit only traffic
generated by the greedy TCP flows and we focus on providing throughput guarantees
for each connection. However, we do not forget about aggressive capabilities of TCP
for getting more bandwidth if available.

The approach we propose assumes that a new TCP connection requests some
throughput guarantees, named Rreq. This request is evaluated by appropriate CAC
function. For admitted connection, at the network entry point the TCP traffic is
submitted to the shaper with the rate R and, in general case, R≥Rreq. To set the R>Rreq
we consider some strategies when the system is lightly loaded.

The investigated in this paper solution can be regarded as a continuation of the
method described in [3] and related to the minimum throughput guarantees for greedy
TCP connections in the case of Premium Multi-Media (PMM) service class (similar
as the considered HTD class), as defined in AQUILA2 project [4]. For PMM service
we assumed that a given TCP connection may get minimum requested throughput but
not more even available bandwidth. So, in the approach presented in this paper the
idea is to get an advantage of the TCP behaviour that allows to increase throughput if
possible. Summary of all approaches tested in the AQUILA network for the PMM
service are presented in [4] and [6].

In the literature we can also find the investigated by many authors CAC schemes
for TCP connections, e.g. in [9] and [10] authors assume to reject new TCP
connections simply by dropping SYN and ACK SYN segments in the case of the
network congestion. For instance, the congestion can be identified when number of
waiting packets in the queue exceeds predefined threshold. However, this approach
could guarantee a fair share of link capacity between running TCP connections but
without possibility for providing them throughput guarantees or throughput
differentiation. Another interesting result, which can be adopted, but not in a
straightforward way, for the purpose of CAC, is reported in [11]. The presented
approach is based on using token bucket marking mechanism. The list of proposed
CAC algorithms for elastic traffic and based on some declarations is also presented in
[12], but none of them is explicitly targeted for guaranteeing the requested rate for
TCP.

The paper is organised as follows. In section 2 we discuss the strategy for using
TCP traffic shaping vs. the bandwidth sharing. Section 3 presents the admission
control rules and section 4 contains the proposed schemes for assigning shaping rates.
Finally, section 5 concludes the paper.

2 AQUILA – Adaptive Resource Control for QoS using an IP-based Layered Architecture,

5 Framework European project, IST 1999-10077

2 Shaping vs. bandwidth shar ing

In the literature the bandwidth sharing topic has received a lot of attention e.g. in [5].
In this section we point out on some advantages of shaping the traffic emitted by TCP
flow. For this purpose, we compare two systems, without and with shapers, as
depicted on Fig. 1.

Fig. 1. Systems without and with shapers

For both cases, we model the network by a single bottleneck link with capacity C and
buffer size B. Fig. 1a shows a typical scenario of system without shapers, when a
number of TCP sources submit traffic to the system. However, for this scheme it has
been recognised that even the TCP connections have similar RTT the throughput
received by each of them may differ essentially. This is due to the bursty nature of
TCP traffic. On the contrary, when we use the shapers, as depicted on the Fig. 1b, one
may expect that TCP traffic is smoothed and, in this way, more equal bandwidth
sharing and less packet losses can be achieved. Furthermore, by decreasing shaping
rate the TCP traffic becomes more smoothed while the additional packet delay
introduced by the shaper increases. In the limit case the TCP traffic tends to constant
bit rate traffic. In Table 1 we show exemplary numerical results for the system with
100 homogeneous TCP connections submitting traffic to the link of capacity C=100
Mbps and buffer size B=20 packets. For each of TCP sources we assumed TCP Reno
with segment size=1500 bytes, advertised window size=64 KB. The reported results
correspond to the systems with no shapers and with shapers of rates R=1, 1.1, 1.2, 1.5
or 2 Mbps. Furthermore, the minimum delay (min RTT) introduced by the network
part was set to 0, 30 or 60 ms. Finally, the effectiveness of the system was evaluated
by simulation (in ns-2) from the point of view of the following parameters: the value
of average RTT (including additional delay introduced by the shaper), packet loss rate
per TCP connection (with 95% confidence interval) and throughput received by each
of the TCP connection (with 95% confidence interval).

TCP source

TCP source

TCP source

TCP source

Network

Single server of capacity
C and buffer size B

a) System without shapers

TCP source

TCP source

TCP source

TCP source

Network

Single server of capacity
C and buffer size B

a) System without shapers

shaperTCP sour ce

shaper

TCP sour ce shaper

TCP sour ce

shaperTCP sour ce

Network

Single server of capacity
C and buffer size B

R

R

R

R

RREQ

RREQ

RREQ

RREQ

RREQ – requested throughput by a single TCP connection

R – traffic shaping rate for single TCP connection

b) System with shapers

shaperTCP sour ce

shaper

TCP sour ce shaper

TCP sour ce

shaperTCP sour ce

Network

Single server of capacity
C and buffer size B

R

R

R

R

RREQ

RREQ

RREQ

RREQ

RREQ – requested throughput by a single TCP connection

R – traffic shaping rate for single TCP connection

b) System with shapers

Table 1. Exemplary numerical results showing the impact of the TCP traffic shaping for the
case with n=100, B=20, C=100 Mbps
Min RTT = 0 msec

Shaping
rate R [Mbps]

Average
RTT [ms]

Packet loss ratio
per TCP connection

Throughput
per TCP connection

[Mbps]
1 528 0 0.999±0.0001
1.1 193 1.5 10-2 ± 2.0 10-3 0.992±0.015
1.2 140 4.1 10-2±.3.0 10-3 0.95±0.03
1.5 74 3.910-2±1.310-3 1.0±0.18
2 25 5.0 10-2±6.6 10-3 1.0 ±0.227
No shaping - Almost all TCP connections were stopped

Min RTT = 30 msec

Shaping rate
R [Mbps]

Average
RTT [ms]

Packet loss ratio
per TCP connection

Throughput
per TCP connection

[Mbps]
1 528 0 0.999±0.0001
1.1 207 1.4 10-2 ± 2.0 10-3 0.999±0.02
1.2 120 1.7 10-2±.1.0 10-3 0.999±0.02
1.5 60 2.410-2±2.010-3 0.964±0.03
2 40 3.2 10-2±3.2 10-3 0.940±0.06

No shaping 31 2.6 10-2±3.0 10-3 0.933±0.123

Min RTT = 60 msec

Shaping rate
R [Mbps]

Average
RTT [ms]

Packet loss ratio
per TCP connection

Throughput
per TCP connection

[Mbps]
1 528 0 0.999±0.0001
1.1 209 0.85 10-2 ± 1.5 10-3 0.976±0.017
1.2 133 1.1 10-2 ± 1.6 10-3 0.992±0.025
1.5 88 1.5 10-2 ± 1.2 10-3 0.973±0.038
2 67 1.6 10-2 ± 1.7 10-3 0.948±0.05

No shaping 61 1.6 10-2 ± 2.0 10-3 0.982±0.07

The presented results say that the impact of the shaper, as it was expected, in the
considered case is significant. First of all, by using the shaper and fixing the rate at
the value of equal bandwidth sharing (in the considered system, shaping rate R=1
Mbps) we receive very desirable results that throughput values for each of running
connections are similar. In addition, no packet losses were observed. On the contrary,
for the system without traffic shaping, the received throughput by the TCP
connections differ essentially and for the case of min RTT=0 almost all TCP
connections were stopped. So, we conclude that the best solution for getting the equal
share between TCP connections is to use the traffic shapers with the rate = C/n, where
n is the number of connections. It is worth to mention that for this case the TCP traffic

outgoing from the shaper and submitted to the link tends to constant bit rate traffic
when the number of running connections is large. This observation will help us in
proposing CAC algorithm (see section 3).

Other conclusions coming from the Table 1 are the following:
• Additional delay introduced by the shaper has no significant impact on the

received TCP throughput.
• Increasing the shaping rate above 1 Mbps makes larger variation of the

throughput received by the TCP connection. This effect is not surprising
since now the offered TCP traffic can temporary exceeds the link capacity
and no sufficient mechanisms for getting equal sharing bandwidth.

• By increasing the shaping rate above 1.1 Mbps we decrease the packet loss
ratio but not in an essential way.

• Impact of using shaper is more visible for the cases with smaller min RTT.

Another observation is that when traffic load counted as:

,
1

CRloadtraffic
ni

i
i ≤=

� =

=

 (1)

where n denotes the number of running connections and Ri (i=1,…,n) is the shaping
rate of the i-th connection, is not greater than the link capacity C then by increasing
buffer size B we may only minimize packet losses, if they are. For example, in the
case of R=1 Mbps and B=20, the measured packet loss ratio was 0 and increasing
buffer size, e.g. up to 100, does not change anymore the system performances.

3 Connection Admission Control

The motivation for applying CAC function in the case of greedy TCP connections is
to provide throughput guarantees for admitted connections. In this section we present
a method for CAC for the case of the system from Fig. 1b as described in section 2.
So, we assume that TCP traffic is shaped at the network entry point. For the clarity of
the text presentation, we focus on the case when the TCP connections are
homogenous, it means they have the same values of min RTT and the advertised
window size, as well as the throughput requested by each of the connections is the
same.

For such a system we state that if we apply CAC the throughput received by the
connection i (i=1,2,..n), when n is the number of running TCP connections, is equal to
the shaping rate Ri. Anyway, this throughput is possible to be got only if:

,
1

CR
ni

i
i ρ≤

� =

=

 (2)

where ρ is the utilization factor (ρ<1). As one can realize, the formula (2) is the same
as formula for CAC function [8] in the case when the system serves CBR
connections. In fact, when we use shaper for TCP traffic, the traffic outgoing from the
shaper takes a form of CBR traffic, with rate equal to the shaping rate. Note that a
greedy TCP source will tend to use whole capacity allocated to it. The value of
parameter ρ we calculate from the analysis of the M/D/1 queuing model [8] taking
into account the values of the target packet loss ratio (IPLR - IP Packet Loss Ratio)
and buffer size B. The formula is the following:

.
)ln(2

2

IPLRB

B

−
=ρ (3)

So, for the case of the link capacity C and the requested throughput for each
connection equal to Rreq the maximum number of admitted connections, say Nmax, we
calculate from:

CRN req ρ≤max , (4)

where value of ρ we calculate assuming low value of IPLR, e.g. IPLR=10-3 as typical
for the Internet network with QoS [2]. In fact, for TCP Reno setting IPLR on that
level does not degrade the TCP throughput comparing with setting IPLR on the value
close to 0.

Table 2 and Table 3 contain the exemplary numerical results corresponding to the
verification of the CAC formula. Table 2 corresponds to CAC calculation while Table
3 corresponds to the verification by simulation. For CAC calculation, as the input data
are: buffer size B, packet loss ratio IPLR and the rate requested by each of the TCP
connections. The results are the values of utilization factor ρ and maximum number
of the TCP connections we can admit. To verify the CAC function, we measure the
values of IPLR and received throughput of each connection assuming the values of B,
Rreq and Nmax from CAC calculation.

Table 2. Exemplary numerical results corresponding to CAC calculation, assumed link
capacity C=100 Mbps

Input data for CAC CAC calculation
Buffer size B

[packets]
Packet loss
ratio IPLR

Requested
throughput

Rreq = R [Mbps]

ρ - utilization
factor

Nmax – max.
number of

connections
10 10-3 1 0.74 74
20 10-3 5 0.85 17
50 10-3 10 0.935 9

Table 3. Exemplary numerical results corresponding to CAC verification by simulation,
assumed link capacity C=100 Mbps

Input data for simulation Simulation results
Buffer size

B
[packets]

Requested
throughput Rreq = R

[Mbps]

Nmax – max.
number of

connections

Packet loss ratio
IPLR

Received rate
per

connection
[Mbps]

10 1 74 0 1±0.001
20 5 17 0 4.998±0.003
50 10 9 0 9.999±0.002

The results presented in Table 3 confirm our expectation about applied CAC function.
For all considered exemplary cases, the received TCP throughput was exactly the
same as the requested one.

4 Assigning shaping rates

The exemplary numerical results referring to the verification of the assumed CAC
function and presented in Table 3 were obtained for the case when the shaping rates
are the same for each of running TCP connections under CAC limit. The simplest
way, say scheme #1, for achieving the above is that for every new connection we set
the shaping rate at the value corresponding to the CAC limit conditions, e.g.
according to the requested throughput.

In this section we focus on the problem of assigning the shaping rates for
achieving the following goals:

• when the system gets the CAC limit conditions, the shaping rates should be
assigned according to the requested throughput;

• when the system is below CAC limit conditions, the shaping rates should be
assigned to share the whole system capacity in a fair way. In this case, the
received TCP throughput for running connections is above the requested
rates.

The solution, say scheme #2, for getting the above goals can be possible only when
we update the shaping rates for each of running connections every time when new
connection starts or one of the running connections terminates. For example, if C=100
Mbps and n=10 then each connection may get throughput equal to10 Mbps, if n=20
then each connection may get 5 Mbps. Unfortunately, this can be achieved only if the
shaping rates in the considered cases will be equal to 10 Mbps and 5 Mbps,
respectively. However, it is obvious that such approach can be rather difficult to
implement since it requires too many actions when number of running connections is
large.

Fig. 2 shows the characteristics of the usage capacity as a function of admitted
TCP connections for the schemes #1 and #2. These schemes can be regarded as limit
cases. We can say that scheme#1 is the most pessimistic while scheme#2 is the most

optimistic. Anyway, we are searching for a scheme that can be relatively easy for
implementing and gives characteristics in the potential working area as depicted on

Fig. 2. Of course, it would be desirable that the characteristics of such a scheme
will tend to be closer to scheme#2.

Fig. 2. Usage capacity vs. number of running TCP connections for schemes#1 and 2

Taking into account the drawbacks of scheme#1 and #2, we propose an intermediate
scheme for assigning the shaping rates. It is evident that one can find a number of
such schemes. In this paper, we present a scheme, say scheme#3, which assumes that
the shaping rate assigned for a new connection is set at the beginning and is not
changed during the connection. For scheme#3, the values of the shaping rates for a
new connection we assign as follows. The value of the shaping rate, say Rnew, we
calculate on the basis of the equation:
 �

=

=

−=
ni

i
ireqnew kRCRR

1

}/)(,max{ ρ , (5)

where k is a constant factor, k > 1. By using expression (5), we assign the higher
shaping rate when the system is lightly loaded, as it is done in scheme#2. If the
system load increases then the assigned shaping rates for new connections decrease
but never below Rreq, as in scheme#1. As a consequence, for scheme#3 the CAC rule
according to (4) is not valid. Instead of (4), now the CAC rule is as follows. New
flow can be admitted only if:

CRR
ni

i
inew ρ≤+ � =

=1

, (6)

where ρ is calculated from (3). Note that in scheme#3 for each connection we
guarantee throughput resulting from the assigned shaping rates.

Table 4 shows the received simulation results for the systems with scheme#1, #2
and #3, each with C=100 Mbps, B= 10 packets and Rreq=1 Mbps. For each TCP

number of running
TCP connections

Usage
capacity

Capacity
limit

CAC limit

Scheme #1

Scheme #2

Potential
working area

number of running
TCP connections

Usage
capacity

Capacity
limit

CAC limit

Scheme #1

Scheme #2

Potential
working area

connection we want to transfer file of constant size equal to 10Mbits. In addition for
scheme#3, we set k=3. The traffic conditions for all compared systems were assumed
as follows. IPLR is equal to 10-3. Then, from (3) we receive value of ρ=0.74. So, the
maximum number of admitted connections in each system is 74. Next, the requests
for new connections arrive to the systems according to Poisson process with the
intensity λ. Assuming the call blocking probability for scheme#1 at the level of 1%,
the value of λ (λ=5.98 calls/sec) we calculate from Erlang formula with n=74 and
connection service time=10Mbits / 1Mbps=10 sec.

Table 4. Comparison of schemes #1, #2 and #3

Scheme Mean file transfer
time
[sec]

Mean system state
when call blocking

Call blocking
probability

Scheme#1 10 74 1%
Scheme#2 0.319 no blocking no blocking
Scheme#3 3.1 31 0.6%

The presented exemplary results in Table 4 say that by appropriately assigning the
shaping rates, e.g. by using scheme#3, for TCP connections we can get better resource
utilisation of the system and lower file transfer times. The ideal scheme is the
scheme#2, for which we can get mean transfer file 0.319 sec and no call blocking was
observed. Anyway, by using scheme#3 we have much better system behaviour than
for scheme#1. Comparing these two schemes, scheme#3 significantly overcomes
scheme#1 since we observe 3 times shorter transfer times and 2 times lower call
blocking. Summarising, by using shaping rates for greedy TCP connections with a
possibility for setting these rates depending on the current system load we can
guarantee the requested throughput for each of the connections and we can increase
this throughput for the connections arriving during the periods when the system is
lightly loaded.

5 Conclusions

In this paper we have presented an approach for handling greedy TCP connections
requiring throughput guarantees. In this approach we apply traffic shapers as well as
CAC function. By shaping TCP traffic we do smoothing of this traffic even to the
form of CBR traffic as well as we observe excellent fairness between competing TCP
connections in access to the resources. Furthermore, as we have proved, the CAC
function for handling TCP connections can be the same as for handling CBR streams.
Another presented result corresponds to the strategy for assigning the shaping rate. It
appears that by using the strategy that takes into account the current system load we
can provide higher throughput than the requested one but only for the connections that
start at the moments when system is not heavy loaded. This result is very desirable
since limits the impact of the shapers when the system is essentially below the CAC
limit.

Further work is focus on implementation of the discussed scheme in the testbeds.

References

1. Babiarz, J., Chan, K., Baker, F.: “Configuration guidelines for DiffServ service
classes”, IETF draft-ietf-tsvwg-diffserv-service-classes-00, work in progress,
February 2005.

2. ITU-T Recommendation Y.1541, “Network performance objectives for IP-based
services” , ITU, May 2002.

3. Burakowski, W., Tarasiuk, H.: "Admission Control for TCP Connections in QoS IP
Network", In Proc. of HSI’2003 Conference, June 2003, Seoul, Korea, LNCS 2713,
Springer Verlag 2003, pp. 383-393.

4. Brandauer, C., Burakowski, W., Dabrowski, M., Koch, B., Tarasiuk, H.: "AC
algorithms in Aquila QoS IP network", European Transaction on
Telecommunications, John Wiley & Sons, Inc., Vol. 16, No. 3, May-June 2005, pp.
225-232.

5. Roberts, J.: “A survey on statistical bandwidth sharing” , Computer networks, Vol.
45, pp. 319-332, 2004.

6. Dabrowski, M., et al.: „Evaluation of the AQUILA Architecture: Trial Results for
Signalling Performance, Network Services and User Acceptance”, Proc. of the Art-
QoS 2003 Workshop, Warsaw, Poland, LNCS 2698, Springer Verlag 2003, pp. 218-
233.

7. Dugeon, O., Morris, D., Monteiro, E., Burakowski, W., Diaz, M.: "End to End
Quality of Service over Heterogeneous Networks (EuQoS)", In Proc. of NetCon'05,
IFIP TC6 Conference, Lannion, France, 14-18 November 2005.

8. Roberts, J., Mocci, U., Virtamo J. (eds.): “Broadband network teletraffic:
Performance evaluation and design of broadband multiservice networks” , Final report
COST 242, LNCS 1155, Springer 1996.

9. Benameur, M., Ben Fredj, S., Delcoigne, F., Oueslati-Boulahia, S., and Roberts, J.
W.: “ Integrated Admission Control for Streaming and Elastic Traffic” , Quality of
Future Internet Services, LNCS 2156, Springer 2001.

10. Mortier, R., Pratt, I., Clark, C. and Crosby, S.: “ Implicit Admission Control”, IEEE
Journal on Selected Areas in Communications, Vol. 18, No. 12, December 2000.

11. Sahu, S., Nain, P., Towsley, D., Diot, C., Firoiu, V.: “On Achievable Service
Differentiation with Token Bucket Marking for TCP”, Proc. ACM SIGMETRICS’00,
Santa Clara, CA, June 2000.

12. Brichet, F., Mandjes, M., Sanchez-Canabate, M. F.: “Admission control in
multiservice networks”, Proceeding of the Mid-Term Seminar of COST257, 1999,
Villamora, Portugal.

